

http://www.macromedia.com

10 • 20034 • MXDJ.COM 10 • 2003 MXDJ.COM • 5

contents
preview issue

Understanding Levels
Kleanthis Economou puts

Macromedia’s graphics design
production program through its

paces.

22

36
7

8

Toppling the Tower of
Babel with MX

Giacomo ‘Peldi’ Guilizzoni uses
Macromedia Flash

Communication Server
components and some minor

ColdFusion MX and
Macromedia Flash

Communication Server code to
create “BabelChat” – a real-time

application that automatically
translates chat from one

language to another.

From Great
Experiences to Great

Business
Norm Meyrowitz, Macromedia’s

president of products, sets the
scene for MXDJ’s upcoming role

as a strategic part of the
community of MX customers,

underlining Macromedia’s
commitment to maintaining an
active dialogue with customers,

“because the success of our
products was built on learning

from and teaching one another.”

Welcome to
Macromedia MX

John Dowdell provides a 35,000
ft. view for MX developers.

12

38

Dreamweaver
Extensions: Weaving
Work into Tools
Paul Davis makes extensions
accessible.

The Logo
Browser Project

Joe Sparks helps you build an
interactive logo browser – a

simple, interactive presentation
with FreeHand MX that you can

publish and view as a
Macromedia Flash movie.

Introducing
Director MX
Miriam Geller provides a
guided tour of some of the
newest features.

50

ColdFusion
Components Under a
Red Sky
Raymond Camden, coauthor of
the “Mastering ColdFusion”
series (Sybex), examines how
CFMX 6.1 will now run on the
latest version of Windows.

46

MXDJ.COM • 710 • 2003

Group Publisher Jeremy Geelan
Art Director Louis F. Cuffari

EDITORIAL BOARD
Dreamweaver Editor
Dave McFarland
Flash Editors
John Tidwell, Jesse Warden
Fireworks Editor
Kleanthis Economou
FreeHand Editors
Sandee Cohen, Louis F. Cuffari
ColdFusion Editor
Robert Diamond
Director Editor
Gary Rosenzweig

INTERNATIONAL ADVISORY BOARD
Jens Christian Brynildsen Norway
David Hurrows UK
Joshua Davis USA
Jon Gay USA
Craig Goodman USA
Phillip Kerman USA
Danny Mavromatis USA
Colin Moock Canada
Jesse Nieminen USA

EDITORIAL
Executive Editors
Jamie Matusow, Gail Schultz
Editors
Jean Cassidy, Nancy Valentine,
Jennifer Van Winckel
Online Content Manager
Alan Williamson

Subscriptions
For subscriptions and requests for bulk orders,
please send your letters to Subscription
Department subscribe@sys-con.com.
Cover Price: $5.99/issue. Domestic:
$29.99/yr. (12 Issues) Canada/Mexico:
$49.99/yr. Overseas: $59.99/yr. (U.S. Banks
or Money Orders) Back Issues: $12.00/ea.

Editorial Offices
SYS-CON Media, 135 Chestnut Ridge Rd.,
Montvale, NJ 07645
Telephone: 201 802-3000
Fax: 201 782-9600
To submit a proposal for an article, go to
http://grids.sys-con.com/proposal.

MX Developer’s Journal
(ISSN#1546-2242) is published monthly
(12 times a year) by SYS-CON Publications,
Inc., 135 Chestnut Ridge Road, Montvale, NJ
07645. Postmaster: Send address changes to:
MX Developer’s Journal,
SYS-CON Publications, Inc.,
135 Chestnut Ridge Road,
Montvale, NJ 07645.

Worldwide Newsstand Distribution
Curtis Circulation Company, New Milford, NJ.

For List Rental Information
Kevin Collopy: 845 731-2684,
kevin.collopy@edithroman.com,
Frank Cipolla: 845 731-3832,
frank.cipolla@epostdirect.com

Copyright © 2003
by SYS-CON Publications, Inc. All rights
reserved. No part of this publication may be
reproduced or transmitted in any form or by any
means, electronic or mechanical, including
photocopy or any information storage and
retrieval system, without written permission.
For promotional reprints, contact reprint
coordinator Carrie Gebert,
carrieg@sys-con.com.

SYS-CON Media
and SYS-CON Publications, Inc., reserve the
right to revise, republish, and authorize its
readers to use the articles submitted for
publication. MX and MX-based marks are
trademarks or registered trademarks of
Macromedia, in the United States and other
countries. SYS-CON Publications, Inc., is
independent of Macromedia. All brand and
product names used on these pages are trade
names, service marks or trademarks of their
respective companies.

acromedia and its devel-

oper community have a

unique bond based on a

mutual fascination with what the

Internet could be, a desire to create great

experiences, and a need to keep pushing

the limits. The active dialogue that takes

place between Macromedia and its cus-

tomers pushes both sides forward.

Together, we are building a world where

every digital interaction – whether in the liv-

ing room, the office, the beach, or the car – is

a smart, simple, efficient, and engaging

experience. We believe it will happen. It’s

who we are and why we are here.

Macromedia, along with you, our customers,

will help make the future better, one inter-

face at a time. Together, with our software

and your expertise, we are going to convert

great experiences into great business.

Macromedia collaborates deeply with

our customers, because you live and

breathe our tools and are in the best posi-

tion to challenge us to make them better.

We respond with the features you ask for

and try to anticipate trends and add fea-

tures that will inspire you to take experience

to new heights. You build things that amaze

us, and challenge us to put even more fea-

tures in future versions of the products.

MX Developer’s Journal is an impor-

tant venue in which we can converse,

and a testament to both the popularity

of the products in Macromedia Studio

MX 2004 and your expertise.

This first issue of MX Developer’s

Journal launches at the same time that

you will begin to experiment with our

new MX 2004 product line, providing a

perfect place to learn the tips and tricks

of the new MX 2004 products together.

The MX 2004 products are evolution-

ary in their approach, as you will see

when you dig deeper into each one.

Dreamweaver MX 2004 offers enhanced

Cascading Style Sheets (CSS) support,

cross-browser validation, built-in graph-

ics editing, and updated support for

ASP.NET, PHP, and ColdFusion server

technologies. Flash MX 2004 has new

timeline effects, easy import of Adobe

Illustrator and PDF content, and CSS sup-

port. Fireworks MX 2004 runs faster and

delivers a broad array of new design

tools and effects. Flash MX Professional

2004 enables advanced content, applica-

tions, and video experiences to be creat-

ed using a forms-based metaphor as an

alternative to the traditional timeline

development.

We’ve also expanded the MX universe

beyond products with MX Elements and

Halo. MX Elements are a series of inter-

face building blocks with a new genera-

tion of interactive design patterns

embedded – making it faster to build

interfaces. These elements bring together

a range of technologies including com-

ponents, templates, CSS style sheets, and

behaviors. MX Elements, by default, have

a distinctive new look and feel we call

Halo – we think it will make the digital

world a brighter, friendlier place.

Each MX 2004 product provides a rich

palette from which the best online experi-

ences will be drawn. Each product is built to

help you get more done, to automate rou-

tine tasks, and to free your time to create. We

think we’ve made major strides with these

releases and look forward to hearing from

you about what you’d like to see us take on

next time. We’re already on the road to plan-

ning for the next version – let us know where

we should meet up for next time.

With this amazing set of tools, the

exhaustive information on macromedia

.com, the vibrant community sites, and

great new resources such as this maga-

zine, our customers have a broad palette

of information from which to create great

digital experiences that fuse our commu-

nity and shared knowledge with their

creativity and passion.

We can’t wait to see what you’re

going to do with these new

products.

cre
a

te

m

The key feature in MX 2004 is...you
by norm meyrowitz

As president,

Macromedia

products, Norm

Meyrowitz oversees

development and

marketing for all

Macromedia product

divisions. Meyrowitz

is a recognized

authority on the

evolution of Web

development

software and media

technology for the

Internet. Through his

experience at

Macromedia,

Meyrowitz has

overseen the teams

creating a vast array

of multimedia and

Web development

products, including

Director, Shockwave,

Dreamweaver, and

Macromedia Flash.

nmeyrowitz@

macromedia.com

From Great Experiences
to Great Business

http://www.oddcast.com

8 • MXDJ.COM 10 • 2003

SYS-CON MEDIA

President & CEO

Fuat Kircaali

Vice President, Business Development

Grisha Davida

Group Publisher

Jeremy Geelan

Technical Director

Alan Williamson

ADVERTISING

Senior Vice President, Sales & Marketing

Carmen Gonzalez

Vice President, Sales & Marketing

Miles Silverman

Advertising Sales Director

Robyn Forma

Director, Sales & Marketing

Megan Ring

Advertising Sales Manager

Alisa Catalano

Associate Sales Managers

Carrie Gebert, Kristin Kuhnle

PRODUCTION

Production Consultant

Jim Morgan

Lead Designer

Louis F. Cuffari

Art Director

Alex Botero

Associate Art Director

Richard Silverberg

Assistant Art Director

Tami Beatty

SYS-CON.COM

Vice President, Information Systems

Robert Diamond

Web Designers

Stephen Kilmurray, Christopher Croce

Online Editor

Lin Goetz

ACCOUNTING

Accounts Receivable

Kerri Von Achen

Financial Analyst

Joan LaRose

Accounts Payable

Betty White

EVENTS

President, SYS-CON Events

Grisha Davida

Conference Manager

Michael Lynch

National Sales Manager

Sean Raman

CUSTOMER RELATIONS

Circulation Service Coordinators

Niki Panagopoulos, Shelia Dickerson,

Edna Earle Russell

JDJ Store Manager

Rachel McGouran

elcome to the first issue

of MX Developer’s

Journal. I hope the

upcoming resources are of great use in

your work in creating presentations and

applications for your clients, to further

their audiences’ needs.

Macromedia MX is sort of an odd bird

among Web technologies. Similar things

are often described as “platforms,” but I’m

not quite certain that we fit into such a

description. Here’s why...

The tools in Macromedia MX can pro-

duce a variety of final outputs – from pre-

sentations you render yourself as hard

deliverables (such as going to paper

through FreeHand MX), to standalone

packages of OS-specific executable code

and media (as in Director MX), to docu-

ment descriptions that are rendered in

the audience’s application of choice

(using Dreamweaver or ColdFusion to

deliver to the various browsers), to files

of media and instructions that are ren-

dered on the audience’s machines in a

single predictable engine (the SWF-pro-

ducing tools).

The term “platform” usually refers to

producing a single set of instructions for a

single OS or device. But the MX toolset

works across browsers, operating systems,

and device types. It’s one workflow that

can end up going to various destinations.

It’s not locked in to a single type of use.

So the overall toolset isn’t what we

usually call a “platform,” because it deliv-

ers your work in a variety of ways. But

what about its individual parts?

Is Dreamweaver a platform? People

create text documents in Dreamweaver to

render within various browser implemen-

tations, even adding styling instructions

and interactivity, which most browsers

today can interpret. It also creates text

files for servers to process, such as

ColdFusion templates. But Dreamweaver

just as easily produces PHP templates, ASP

templates, .NET templates, Java templates,

or other types of files – it’s not locked in to

a single destination. Dreamweaver is a

common development environment to

get out to a range of different platforms,

but isn’t really a platform itself.

What about ColdFusion? Maybe....It

lives on the server, and people have cer-

tainly created many applications with it

over the years. The ColdFusion server

extends the Java 2 Enterprise Edition

with the fastest way to develop server-

side applications, so it’s certainly bound

to certain types of systems. But the final

deliverable will work in any browser.

Because J2EE abilities are common on

most servers today, the ColdFusion instal-

lation isn’t even as locked-in as most

other things called “platforms” these

days. It works atop a variety of proces-

sors, operating systems, and Web servers.

ColdFusion installations float above many

true platforms, providing a service layer

that doesn’t constrain you to a particular

operating system or device type.

The Macromedia Flash Player? This

probably has the best chance of being

called a “platform,” because it’s a pre-

o
ve

rv
ie

w Welcome to
Macromedia MX

The platform that isn’t a platform
by john dowdell

w

http://www.macromedia.com

10 • 2003

dictable engine you can build upon with-

in the final delivery devices. But, even

more so than ColdFusion, it floats as a

service layer above many browsers, oper-

ating systems, and device types. There

are no system-level hooks accessible to a

SWF file... the Macromedia Flash Player is

platform-neutral, and fulfills the promise

of client-side Java.

Macromedia Flash Player
Let’s take a closer look at the

Macromedia Flash Player for a moment.

How does it differ from other client-side

engines, such as the browsers, client-side

Java, .NET’s Common Language Runtime,

and other distributed engines?

There are three angles that make the

Macromedia Flash Player unique:

Cooperation

The little Macromedia Flash Player is

happy on various operating systems and

devices. There’s no need to shoehorn the

audience into a particular configuration

to use it. Mac, Win, Linux... computer,

handheld, mobile phone... the

Macromedia Flash Player provides a local

service layer that will work with the audi-

ence’s choice of technologies.

JavaScript is great, but you have to

worry about what will be rendering the

results of the interactions, which is even

more of a pain if you want to go beyond

text and graphics to audio and video ren-

dering, or want to make live network

requests. For devices, the Flash Player is

small enough so you rarely have to worry

about additional “micro” or “compact”

versions of the engine... it’s the same

across device form. Being self-contained

and predictable lets you confidently

hook into more systems.

More, it will cooperate with a variety

of server-side mechanisms. It doesn’t

matter if you prefer to use PHP on your

own machines, ASP or .NET, handrolled

Java, whatever... just so long as the server

can handle live XML transfers and SOAP

requests, the Flash Player will cooperate

with your server as well as with the audi-

ence’s hardware choices.

Velocity

It’s one thing to make and distribute

a better mousetrap, because each person

can make his or her own individual deci-

sions to use that mousetrap or not. But

it’s much harder to make a new type of

radio transmitter, telephone system, or

television signal. That’s because you have

to rely on enough other people choosing

the same technology in order to have it

work for any of them. Network effects are

a definite gating factor in distributed

technology.

The Macromedia Flash Player is the sin-

gle most widely used software on the

Internet. It is bigger than any browser... cer-

tainly bigger than any operating system.

(Look at the “Zeitgeist” section of Google

sometime, and compare it to the Flash

Player census... people do slowly improve

their browsers, but new operating systems

lag far behind browsers, and hardware

changes are even slower than that.)

What’s more is that new versions of

the Player are adopted more quickly than

other technologies. It’s a small piece of

code to download – it does not force the

audience to change their existing UI or

work habits – and its ongoing use is driv-

en by the most popular sites on the Web.

A new version reaches majority con-

sumer viewership within a year. It’s the

fastest way to reach the largest audi-

ences with new capabilities.

Large downloads, or those that

require investment or changes of habit

on the part of the audience, don’t have

the velocity that this small, platform-neu-

tral engine has. If you can’t force installa-

tions on your audience’s machines, then

the Macromedia Flash Player gives you

the fastest route to new types of abilities.

Security

Many platforms are integrated top-to-

bottom, tying tightly into the operating

system. This summer we saw the disas-

trous results of even such simple archi-

tectural choices as allowing e-mail

attachments to execute native code in

response to clicking a message. Lock-in

to a single system can offer great power,

but in a networked world it just doesn’t

work to continually try to patch over oth-

ers’ abuses of such power.

Keeping a sandbox around a certain serv-

ice layer is intrinsically safer. Instead of deep

top-to-bottom control, limiting abilities to a

certain layer of services over a wide range of

environments is naturally more secure.

–continued on page 48

overview

MXDJ
Section Editors

10 • MXDJ.COM

Dreamweaver
Dave McFarland

Author of Dreamweaver MX: The Missing
Manual, Dave can be relied upon to bring

Dreamweaver MX to life for MXDJ readers with
clarity, authority, and good humor.

Flash
John Tidwell

Having started and created FlashCore, the
largest dynamic media creative and technical

community in the world, and then a successful
company producing technology trade shows and
conferences, John is currently CEO of Perennial

Light, Inc.

Jesse Warden
A multimedia engineer and Flash developer,

Jesse maintains a Flash blog at www.jesse
warden.com and says, referring to the MX prod-

uct range, that "Things are changing, opportunity
is on the frontier, a paradigm shift is occurring for

Web design, Web applications, et al."

Fireworks
Kleanthis Economou

A Web developer/software engineer since 1995,
now specializing in .NET Framework solutions,

Kleanthis is a contributing author of various
Fireworks publications and is the technical editor

of the Fireworks MX Bible. As an extension
developer, he contributed two extensions to the

latest release of Fireworks.

FreeHand
Sandee Cohen

A teacher with New School University in New
York City, and also the computer graphics coor-

dinator for the school’s Computer Instruction
Center, Sandee is the author of 10 versions of

the Visual Quickstart Guides for FreeHand,
Fireworks, InDesign, and Kai's Power Tools, and

has also been a speaker for Seybold Seminars,
MacWorld Expo, and PhotoPlus conferences.

Louis F. Cuffari
Cofounder and art director of Insomnia Creations

(www.insomniacreations.com), Louis has spent
most of his life as a studio artist, including medi-
ums from charcoal portraits to oil/acrylic on can-

vas. In addition to studio art, he has been
involved in several motion picture projects in the
facility of directing, screenwriting, and art direc-
tion. Louis’s creative works expand extensively

into graphic design, and he has expertise in both
Web and print media. He is deputy art director

for SYS-CON Media and the designer
of MX Developer’s Journal.

ColdFusion
Robert Diamond

Vice president of information systems for
SYS-CON Media and editor-in-chief of

ColdFusion Developer’s Journal, Robert was
named one of the "Top thirty magazine industry
executives under the age of 30" in Folio maga-

zine’s November 2000 issue. He h.olds a BS
degree in information management and technol-

ogy from the School of Information Studies at
Syracuse University. www.robertdiamond.com

Director
Gary Rosenzweig

Founder and owner of CleverMedia, Gary is the
creator of many Shockwave and Flash games,

and the author of Director and Flash books.

http://www.seapine.com

10 • 2003 MXDJ.COM • 1312 • MXDJ.COM 10 • 2003

Macromedia Dreamweaver’s best feature is the extensibility functional-

ity built into Dreamweaver since Dreamweaver 2. Extensibility allows us to

take a common or complex task, convert it into an extension for

Dreamweaver, and get some reuse out of it. Extensions come in a variety

of types; the most common are commands, behaviors, objects, and server

behaviors. Other varieties also exist, but these are the most common. Each

one has a specific specialty or purpose and is usable in different situations.

Commands are used to insert code into the page, to perform a task, or

to set up an object on the page. They have a user interface that allows the

inserted code to be customized to some extent to the needs of the specif-

ic instance when inserted. Commands reside under the Commands menu

found on the main menu bar. Apply Source Formatting is one example of

a command that comes with Dreamweaver.

Objects are a lot like commands, but generally don’t have user inter-

faces or are used to call commands that you want. They are found on the

Insert bar. All of the icons under the Common Insert Tab (as is everything

else on the Insert Tab) are objects.

Behaviors are extensions that are tied to a specific object on the HTML

page and to a JavaScript event on that object. It sounds complicated but

you’ve probably used plenty of behaviors already; Rollover Images is an

example – it’s tied to the image and uses the onMouseOver event.

Behaviors allow the same set of JavaScript to be used repeatedly on the

page (for example, Rollover Images) without requiring each instance of

the behavior to have its own set of JavaScript. Behaviors are also easilyby paul davis

14 • MXDJ.COM 10 • 2003

edited because you can select the object

they are attached to and they show up in

the behavior panel and double-clicking

on them will bring up the behavior and

the values that were used in the behavior.

Behaviors also utilize a user interface to

enter the needed values for the behavior.

Finally, server behaviors are similar

to behaviors in some regards but are

also similar to commands. Server behav-

iors make the complex easy when it

comes to using a database to manipu-

late the content of the page, inserting a

form’s data into a database, updating

database records, deleting database

records, or even handling security for

logins and logouts. Dreamweaver sup-

ports Active Server Pages (ASP),

ColdFusion (CF), JavaServer Pages (JSP),

PHP, and mySQL, and it even supports

ASP.NET for server languages it will have

server behaviors for. Examples of server

behaviors include Repeat Region, Insert

Record, Delete Record, and User

Authentication.

In Image I the location of the exten-

sions are noted by numbers. 1 is for com-

mands, 2 for objects, 3 for behaviors, and

4 for server behaviors.

Okay, now we’ve gone over the vari-

ous aspects of the extensibility capabili-

ties of Dreamweaver, even got in a sneak

peek at the upcoming Dreamweaver MX

2004 and one of the new Kaosweaver

site, but you might be thinking it would

take rocket science to create an exten-

sion. Well, let’s walk through the cre-

ation of a command and you’ll see it

really isn’t difficult. First we need to

make some preparations in order to

make the creation process easy and

quick. The fastest way to set up the site

in Dreamweaver is to find a file already

on your hard drive in the folder we want

the site to point to. To do this, we’ll need

a common file for everyone so we’ll use

the Breadcrumbs extension from

Kaosweaver to do this.

Download the Breadcrumbs exten-

sion from www.kaosweaver.com or from

Macromedia’s exchange at www.macro-

media.com/cfusion/exchange/index.cfm.

Install the extension by either double-

clicking on it or dragging the icon over

the Exchange Manager icon in your

Dreamweaver folder. Once it is installed,

we need to do a search for a file called

“breadcrumbs.html” on the drive where

Dreamweaver is installed. Those who

have Windows 2000 or XP will have

something similar to this for a path:

C:\Documents and

Settings\userName.CompName\Application

Data\Macromedia\Dreamweaver\Configuration\

The important thing isn’t to match my

path, but to get the path to the file

because we need it to make a site in

Dreamweaver. Now, armed with the path

information, load Dreamweaver and cre-

ate a new site. This can be done under

the Manage Sites menu option found

under the Site menu option from the

main menu bar by clicking on New when

the Managing Sites dialog box appears.

Name the site myConfig; we need to

enter the path right under the site name

(the entry is called Local root folder.)

After that, click OK and the site will gen-

erate the cache for the new site. For

those who don’t have Windows 2000, XP

or Mac OSX will have a few thousand files

to go through so it may take a little time,

which is normal.

Now that the site is created, you can

see a folder list that includes a folder

called commands. You can navigate to this

folder and open the breadcrumbs.html file

im
a

g
e

 I

http://www.cfdynamics.com

16 • MXDJ.COM 10 • 2003 10 • 2003

im
a

g
e

 I
I

im
a

g
e

 I
II

im
a

g
e

 I
V

im
a

g
e

 V
im

a
g

e
 V

I

we looked for in the first step. It will look

similar to Image II, depending on your OS.

Looks strangely familiar doesn’t it?

Just like an HTML page with a form.

However, when you run Breadcrumbs the

extension looks like Image III.

The first thing to notice is the extra

buttons on the right that weren’t in the

HTML display when we were looking at

the source design. Those come from

using special JavaScript functions that

control what the buttons will display and

what they will do. Now, close the exten-

sion and then the breadcrumbs.html file

and let’s create our own file in the com-

mands directory for creating your first

extension.

Create a new file called myCommand.

html under the commands folder in the

site (myConfig) we just created. Load the

file in Dreamweaver and go to the source

view. You will see the standard HTML

page layout at this point with the things

you are used to seeing in a HTML page.

Under the title of the document, change

the name to Zippy Menu.

Add a <script></script> tag set in the

<head> of the document. Now go back

to the design view, click on the blank

white canvas of the HTML page, and then

insert a form (from the main menu bar,

Insert -> Form -> Form and the familiar

red dashed line will appear). Next, insert

into the form a table that has the set-

tings shown in Image IV.

In the left column, from top to bot-

tom, enter the labels "Menu Label 1:",

"Menu Label 2:", "Menu Label 3:", "Menu

Label 4:" and "Menu Label 5:". In the right

column put a corresponding text field in

each of the table cells next to the labels.

Select the entire table and click on the

no wrap checkbox in the properties

panel. Select the baseline vertical align-

ment for the entire table as well. Next,

select the column of labels and right-

align them. Finally, select the entire table

and remove the width property (which is

set to 100%). Your page should look like

Image V when this is done.

The source code for this is shown in

Code I.

Everything else we do will be

between the <script> and </script> tags.

Commands have certain special

JavaScript functions that interact with

Dreamweaver to accomplish needed

events.

“the word function
tells dreamweaver

that this is a
set of code it
can access by

the name”

canAcceptCommand()
This function controls whether the

command will be displayed in gray when

the command menu is accessed. Usually

this is where you would do some sort of

check to see if the command was being

accessed properly. We will be using a

default setting that will make the com-

mand available at all times. Normally, for

a command that will insert code into the

HTML page, we wouldn’t want it to be

available when the user doesn’t have an

HTML page open. Since we aren’t doing

that, our command would look like this:

function canAcceptCommand() {

return true;

}

The word function tells Dreamweaver

that this is a set of code it can access by

the name – just like in JavaScript func-

tions. In this case, the name is

canAcceptCommand(). Since we aren’t

doing anything, we simply return true. If

we were actually going to validate

whether the command was supposed to

be used, we could return false to indicate

that the command name in the menu

should be grayed out.

commandButtons()
This function sets the button that will

appear on the right side of the extension.

At a minimum, we need two buttons, OK

and Cancel. If we want to provide help or

other abilities (for example, remove), they

are added here. Our function will look

like:

function commandButtons() {

return new Array ("OK", "if (zmenu()) {win-

dow.close();}",

"Cancel", "window.close()");

}

Breaking this down, it returns an

array, which contains sets of information.

First a label (“OK”), then what JavaScript

to execute when the button is pushed ("if

(zmenu()) {window.close();}")

Now we get to the part of the exten-

sion where we make it do something.

Notice in the commandButton function

above we had a statement that included

a function call named zmenu() if the OK

button was clicked. This is what we will

create next.

zmenu()
The main function for the extension is

the zmenu() function. Unlike the other

two functions, this one is created by the

developer and isn’t part of the

Dreamweaver extensibility code. In our

case, our function will be used to put a

Zippy Menu on the page. The Zippy

Menu is basically a table with five

columns and one row with each item in

the extension user interface populating

one of the table cells with a default link

already set up. Let’s set up the function

first and then we’ll take the parts of the

function piece by piece.

function zmenu() {

}

The first thing we need to do is get

the form input that the user entered into

the form we provided. We do this like we

would if we were trying to access the

form elements on a HTML page.

Macromedia used the document object

model that was developed for the

Internet Web pages for the extension

processing. We have five textfields set to

the Dreamweaver default names –

textfield, textfield2, textfield3, textfield4,

and textfield5. The form is named form1

and everything else is standard; we will

put the five labels into variables named

label1 through label5, and the code looks

like this:

var label1=document.form1.textfield.value

var label2=document.form1.textfield2.value

var label3=document.form1.textfield3.value

var label4=document.form1.textfield4.value

var label5=document.form1.textfield5.value

Normally you would error check to

see if they have entered the expected

information, and provide them with an

alert about what they may have entered

incorrectly or omitted, but for our

demonstration we’ll skip this part. If

you plan to make an extension and

have it for public use, error checking is

critical to insure that users are able to

utilize the extension to its maximum

potential.

Now we need to compose the table

with all of the variables we need in order

to insert the end code into the page.

This is done by storing the actual HTML

code in a variable we’ll call str (which is

MXDJ.COM • 17

18 • MXDJ.COM 10 • 2003

short for String) and we will add the

entered values in where they need to be.

To start, let’s get the basics of the table

together.

var str="";

str="<table border=\"0\">";

str+="<tr>";

str+="<td>";

str+="";

Here is where we need to insert our

first entry from the user.

str+=label1;

We need to close off the <a> tag and

continue with the table; the remainder of

the code would look like Code II.

Now we have the table all construct-

ed in the str variable. The above com-

ments use an operand, +=, which

means take what is in str and add what

is after the += to str. It is equal to

str=str+new Stuff, so the code in Code II

adds it all up into one big line. On the

\" marks, what the backslash (\) does is

tell JavaScript that the next character is

part of the string instead of the end.

When the string is written, it is removed.

The last thing we need to do is write the

str contents to the HTML page. Again

we will rely upon the code Macromedia

put in Dreamweaver to get the str con-

tents onto the page. The code is as fol-

lows:

var theDOM = dw.getDocumentDOM();

theDOM.insertHTML(str);

The first line sets up theDOM to point

to the HTML page’s document object

model (in other words, makes it so we

can change, insert, or modify the page

we want the extension to work on by

accessing it through the variable

theDOM). The next line uses the

insertHTML() function to insert HTML

into the page (I’ll bet you didn’t guess

that…) The str in the insertHTML() func-

tion is what is being inserted. Finally, the

last thing we need to do in creating the

extension is return a value (look back at

the commandButtons function; it is

expecting this to return a true or false so

it can close the window,) which is sim-

ply:

return true;

The entire code between and includ-

ing the script tags is shown in Code III.

Now save the myCommand.html

page, exit Dreamweaver, and then

reload Dreamweaver (this resets the

menus so the command will appear in

them). Load a page and put it in design

view, click on the Commands menu

from the main menu bar, and look for

our command, called myCommand, and

it will open Zippy Menu, similar to

Image VI.

Enter five labels (one, two, three, four,

and five) and click OK; you should get

output like Image VII.

That is how a command is made. I

hope I didn’t lose anyone during the dash

through the creation of Zippy Menu. You

may be wondering why it said

myCommand in the command menu

instead of Zippy Menu. That’s because

the extension wasn’t installed with a

.mxp file via the extension manager. This

requires packaging the extension and is

another article all by itself. This should

get you started and thinking of ways to

turn common processes and things you

“rely upon the
code macromedia put

in dreamweaver”

http://www.salescart.com

c
o

d
e

 I
I

c
o

d
e

 I
II

c
o

d
e

 I

20 • MXDJ.COM 10 • 2003

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<title>Zippy Menu</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-

1">

<script>

</script>

</head>

<body>

<form name="form1" method="post" action="">

<table border="0">

<tr valign="baseline">

<td nowrap><div align="right">Menu Label 1: </div></td>

<td nowrap><input type="text" name="textfield"></td>

</tr>

<tr valign="baseline">

<td nowrap><div align="right">Menu Label 2: </div></td>

<td nowrap><input type="text" name="textfield2"></td>

</tr>

<tr valign="baseline">

<td nowrap><div align="right">Menu Label 3: </div></td>

<td nowrap><input type="text" name="textfield3"></td>

</tr>

<tr valign="baseline">

<td nowrap><div align="right">Menu Label 4: </div></td>

<td nowrap><input type="text" name="textfield4"></td>

</tr>

<tr valign="baseline">

<td nowrap><div align="right">Menu Label 5: </div></td>

<td nowrap><input type="text" name="textfield5"></td>

</tr>

</table>

</form>

</body>

</html>

str+="";

str+="</td>";

str+="<td>";

str+="";

str+=label2;

str+="";

str+="</td>";

str+="<td>";

str+="";

str+=label3;

str+="";

str+="</td>";

str+="<td>";

str+="";

str+=label4;

str+="";

str+="</td>";

str+="<td>";

str+="";

str+=label5;

str+="";

str+="</td>";

str+="</tr>";

str+="</table>";

<script>

function canAcceptCommand() {

return true;

}

function commandButtons() {

return new Array ("OK", "if (zmenu()) {window.close();}",

"Cancel", "window.close()");

}

function zmenu() {

var label1=document.form1.textfield.value

var label2=document.form1.textfield2.value

var label3=document.form1.textfield3.value

var label4=document.form1.textfield4.value

var label5=document.form1.textfield5.value

var str="";

str="<table border=\"0\">";

str+="<tr>";

str+="<td>";

str+="";

str+=label1;

str+="";

str+="</td>";

str+="<td>";

str+="";

str+=label2;

str+="";

str+="</td>";

str+="<td>";

str+="";

str+=label3;

str+="";

str+="</td>";

str+="<td>";

str+="";

str+=label4;

str+="";

str+="</td>";

str+="<td>";

str+="";

str+=label5;

str+="";

str+="</td>";

str+="</tr>";

str+="</table>";

var theDOM = dw.getDocumentDOM();

theDOM.insertHTML(str);

return true;

}

</script>

may do repeatedly into a command. Or it may have

helped you appreciate the work that goes into the cre-

ation of even a simple extension.

Conclusion
My site, www.kaosweaver.com, is a great

resource for both commercial and free extensions.

Another awesome resource is www.dwfaq.com,

where there is a resource page with an extensive list

of extension developers. Of course, www.macrome-

dia.com has the Exchange, which is home to plenty

of extensions. Get out there and extend

Dreamweaver, expand your possibilities and “Weave

Fast – Dream More”!

Paul Davis is an extension author, programmer, and

owner of Kaosweaver.com. He lives in Overland

Park, Kansas, with his wife and two children - with

one more due in January 2004.

"Weave Fast - Dream More"

kaosweaver@kaosweaver.com

http://www.hostmysite.com

10 • 2003 MXDJ.COM • 2322 • MXDJ.COM 10 • 2003

10 • 200324 • MXDJ.COM 10 • 2003

Flash Communication Server (or as

people affectionately call it, “flashcom”)

provides you with a clean programming

model, with communication objects

(NetConnection, NetStream, the very

powerful shared objects) spread across

the Flash Player and the server side,

where you code in our brand new flavor

of JavaScript, called “ActionScript for

Communication” (or ASC for short).

If you are not familiar with Flash

Communication Server and its communi-

cation objects, head over to www.macro-

media.com/support/flashcom/documen-

tation.html and download the award-

winning documentation there. I highly

recommend “Developing Communication

Applications.” I always say, “Don’t even

consider coding a complex Flash

Communication Server application unless

you’ve read it front to back,” and I mean it.

Flash Communication Server comes

with a variety of prebuilt components

that allow you to create a number of

powerful and slick-looking applications

with very little scripting. (I wrote a tutori-

al on how to create such an app here, see

www.macromedia.com/devnet/mx/flash

com/articles/first_comm_app.html.)

As MXDJ readers know, components

are great for demos and rapid prototyp-

ing, but are often not enough for your

application’s needs. Custom features are

what make each Rich Internet

Application unique and valuable.

In this tutorial we’ll create an applica-

tion that uses components for some of its

features and custom client- and server-

side code for the more advanced ones.

Requirements
This application uses the following:

• Flash MX with up-to-date

Communication Components

• Flash Communication Server 1.5, with

up-to-date components framework

• ColdFusion 6.1 with the Flash

Remoting gateway

You should have all of the above

installed and ready to go in your devel-

opment environment before continuing.

You should know where your Flash

Communication Server’s application fold-

er is, the URL to your ColdFusion Flash

Remoting gateway, and the location of

the cfdocs folder.

The Application: BabelChat
Chat rooms are great because they

get people together in the same virtual

space at the same time, regardless of

geographical location. One last hurdle to

communication that some users face is

the language barrier. Wouldn’t it be great

if we could each simply type in our own

native tongue, with the software taking

care of the translation for us?

Well, only a few years ago this would have

sounded like science fiction, but it’s exactly

what we’re going to build in this tutorial.

Each user can choose to write, and

read, in one of the following languages:

• Chinese

• English

• French

• German

• Italian

• Japanese

• Portuguese

• Spanish

Users will even be allowed to write in

one language and follow the chat con-

versation in another!

Image I shows a screenshot of the

final application. Each user has a little

avatar (the little guy with the user name

next to it), which is used to display pres-

ence and also to choose which language

to read in. Clicking on a country will

move your avatar to it and switch the lan-

guage displayed in the chat below it.

Each user also has a combo box for

selecting which language to write in, and

the usual chat interface to send and read

messages. The application also uses stan-

dard Communication Components such

as the SimpleConnect, the UserColor, the

ConnectionLight, and the PeopleList.

As you’ve probably already guessed,

the translation is done by AltaVista’s

BabelFish software. If you haven’t tried it

yet, visit http://world.altavista.com. The

same software also comes packaged as a

Web service, which allows us to use it for

our BabelChat application!

You can download the source code

from www.sys-con.com/mx/sourcec

.cfm. Are your fingers itching yet? Let’s

get cracking then!

Architecture

Always start with a pen and paper. A

whiteboard and felt pens are even better.

After a few sketches, the application’s archi-

tecture will look something like Image II.

Basically, the Flash clients (SWF

movies) will talk to the Flash

Communication Server (using the RTMP

protocol). The Flash Communication

Server will then talk to a ColdFusion

Component (through Flash Remoting),

which will in turn invoke the Web service

(through XML), which will deliver the

translated information.

Once the architecture is in place, we

need to think about the interaction

between these pieces. Image III is a rough

interaction diagram.

Fourteen steps to see one word trans-

lated in French...nobody said it was going

to be easy!

Now that we have our rough architec-

ture and interaction diagrams in place,

we can start coding with a clear mind.

The ColdFusion Component

Flash Communication Server needs to

be able to talk to the Web service. It does-

n’t talk directly to Web services, so we

have to go through remoting. A quick and

easy way to do it is by creating a “shimmy”

ColdFusion Component that the Flash

Communication Server can invoke. The

component will in turn invoke the

BabelFish Web service to translate the

sentence, catch the return value, and pass

it back to the Flash Communication

Server. Code I is the code for the CFC.

For the ColdFusion experts out there

(I’m not one of them), this is pretty straight-

forward. We define a component with one

function called translate. The function takes

two arguments, an src string (the string we

want to translate), and a code, which define

the language to translate from and to. Valid

values for the code string are:

• “en_zh” (English to Chinese)

• “en_fr” (English to French)

• “en_de” (English to German)

• “en_it” (English to Italian)

• “en_ja” (English to Japanese)

• “en_pt” (English to Portuguese)

• “en_es” (English to Spanish)

Then:

• “zh_en” for Chinese to English

• “fr_en” for French to English

...you get the idea.

The only thing that the translate func-

tion does is invoke the Web service by

passing it the two variables we passed to

babelfish.cfc; wait for the result (which

gets stashed in the aString variable) and

pass the result back to the caller as a

return value.

Save the code in a file called

babelfish.cfc in your ColdFusion cfdocs

directory and you’re done with it. This

was the easy part.

Server-Side Code

I always find it easier to start with the

server-side ActionScript for

Communication code. There are fewer

things to think about there; it’s all just

code. No MovieClips, time lines, colors, or

graphics to distract me.

The first thing we need to do is make

sure the remoting calls work. A simple test

of Code II assures that they do.

Save the file as main.asc in a directory

called babeltest in your Flash

Communication Server’s applications

folder and test it with the

Communication App Inspector. Just con-

nect to your server, type “babeltest/” in

the App/Inst text field, click on “Load”,

then click on “View Detail”. Click on

“Reaload App” and look at the traces. If

after a few seconds you see “val: hello”,

you’re golden. If not, the Flash

Communication Server couldn’t reach

your ColdFusion Component. Check the

connection string in the

createGatewayConnection string and try

again until you’re ready.

Now we’re ready to create the real

application. Start an empty main.asc in a

BabelChat application folder under the

applications folder and type in:

load("components.asc");

load("NetServices.asc");

Nothing special there. We know we’ll

use some components, so we need to

load components.asc, and we need to

load NetServices.asc to enable our app to

do Flash Communication Server-to-

ColdFusion remoting.

Next we define the BabelFishResult-

Handler object (see Code III).

This object is in charge of receiving a

result from babelfish.cfc (a translated

string), and either returning it to its

“owner” or calling babelfish.cfc again to

translate the string again (this happens

every time we “go through English”).

Next we define the BabelFish-

Translator object, which will create

instances of BabelFishResultHandler (see

Code IV).

Our application will have an instance

of the BabelFishTranslator for each com-

bination of languages we want to trans-

late from and to. In its constructor it

decides whether it should use 0 (same

language), 1 (to and from English), or 2

MXDJ.COM • 25

Create a number of powerful
and slick-looking applications
with very little scripting”“

26 • MXDJ.COM 10 • 2003 10 • 2003 MXDJ.COM • 27

10 • 2003 MXDJ.COM • 2928 • MXDJ.COM 10 • 2003

passes (“through” English) to translate

from the “from” language to the “to” lan-

guage.

The BabelFishTranslator object has

only one method, called translate. Its job

is to translate a string invoking the

babelfish.cfc component using an

instance of the BabelFishResultHandler

object.

When the BabelFishResultHandler

instance has finished translating, it will

invoke the onResult method for this

BabelFishTranslator, which by default

does nothing. We’ll see later that our

script will overwrite this method to deliv-

er the translate sentence to the Flash

clients.

Next we define some startup code for

our Flash Communication Server applica-

tion (see Code V).

Code V is worth explaining carefully.

First, we create an array of language

codes (application.language

Codes). We initialize a few variables:

• translatorObjects is going to be a

table of instances of

BabelFishTranslator.

• sentenceCounter is a unique

counter for each sentence

that gets sent by the Flash

clients. We need this

counter to maintain the

order of each sentence,

regardless of how long

it took to translate it.

• languageShared

Objects is also a table,

this time of shared

objects. We’ll keep a

shared object for each

language, and Flash

clients will subscribe

to only one of them at

a time, depending on

which language they

want to read the chat in.

Then we actually

populate the language-

SharedObjects table by loop-

ing through the language

codes. For each language we get a

nonpersistant shared object (called

“lang_en”, “lang_zh”, etc.) on which we

define a few variables (a lastSent counter,

a history string, and a queue Array), and a

method called deliverInOrder.

This method will be called by each

BabelFishTranslator object when a new

sentence has been translated and is

ready for delivery. It is in charge of main-

taining the order of delivery of messages,

and it does this by using the lastSent

property in combination with the queue

array. When a message needs to be deliv-

ered to a client, it is done through a

SharedObject.send call – the

this.send("newMsg", msg) calls. We’ll see

later how to make the Flash clients

respond to such a call.

The last part of our startup is to get a

littleGuys SharedObject, which we’ll use to

maintain a shared view of the users’ posi-

tion, name, and color across users.

Basically, whenever a user clicks on a coun-

try, their little avatar will move to that

country, and this movement will be reflect-

ed in all the clients connected to the app.

To implement this feature we need to

define the two methods shown in Code VI.

onConnectAccept is called when every

Communication Component has decided

to accept a client’s connection. In it, we

create a new slot in the littleGuys_so

SharedObject, using the client.__ID__

property, which was automatically

assigned by the component’s framework

during this client’s onConnect. We prefix

the ID with a “u” for “user” because it’s

always better to start array indexes with a

letter. We assign a default position to this

client’s avatar. This is just some placehold-

er data; we’ll see in the section on client-

side code that each client overwrites this

data with data retrieved from a local

shared object. A SharedObject.setProperty

on the server side will trigger an onSync

on the client side. That’s how the client

script will decide to create a new little guy

for the user who’s connecting.

In the onDisconnect function we

delete the slot for the client disconnect-

ing. This will trigger an onSync on the

client side, which will remove the appro-

priate little guy.

One last thing that we do in

onDisconnect is clear the history in every

language if this user is the last one to

leave the room.

Back to the translation feature: we

need to provide a function for our Flash

clients to call whenever they want to

send a new message. To do so we attach

the translateAndSendMessage method in

Code VII to the Client object prototype.

The function takes as input the user

name of whoever sent the message, the

language code it was written in, and the

message itself.

Server-side ActionScript is single-

threaded, so it’s great to assign or incre-

ment global counters. That’s just what we

do with sentenceCounter: even if multi-

ple clients click “Send” at the same exact

time, thus invoking translateAndSend

Message, Flash Communication Server

guarantees us that these calls will be put

into a queue and executed only one at a

time.

Then we translate the sentence in all

the available languages by looping

through the language codes. If it’s the

first time we try to translate from this lan-

guage (lang) to another

(application.languageCodes[i]), we create

a new BabelFishTranslator to take care of

the translation. We also overwrite the

onResult method for this translator. In it,

we “prettify” the message by adding the

user name of the sender and the code of

the language of origin of the message,

and changing the color of the HTML

string. Then we invoke the deliverInOrder

method on the appropriate

languageSharedObject instance, to deliv-

er the translated message to the clients.

After instantiating the translator

object (only if it was necessary), we finally

invoke the translate method on it. We

repeat this for each language.

Do you see the round-trip? Quickly:

client calls translateAndSendMessage,

which calls translate on eight different

BabelFishTranslator instances, each of

which does the remoting call to

babelfish.cfc, which returns through

BabelFishResultHandler, which invokes

onResult on the translator, which invokes

deliverInOrder on its destination

SharedObject, which calls

send(‘newMsg’) back to the client. Woah.

Good stuff.

The hard part’s over; it’s all downhill

from here.

On the server-side, we need to finish

with two more methods. One is

getHistory (see Code VIII).

This method is called by a client when

it switches reading languages. All it does

is return the history string that has been

building up in the deliverInOrder method

seen in Code V.

The last one is a utility method taken

straight from the standard Chat component

that comes with Flash Communication

Server (chat.asc). It’s a function called

hiliteURLs, which finds URLs in a string and

turns them into links. It’s not shown here for

brevity, but you can find it in the tutorial

source code that you can download.

Congratulations on completing the

hardest part of the tutorial. Time to wake

up the designer in you and launch Flash

MX, we’re going to the client side!

The Client-Side UI

First of all we need to place a few

components on the stage:

• Grab a UserColor component and

name it color_mc

• Grab a ConnectionLight component

and name it light_mc

• Grab a PeopleList component and

name it people_mc

• Grab a SimpleConnect component

and name it simpleConnect_mc

In the Properties Inspector for

SimpleConnect, type rtmp:/babelchat/

(or rtmp://yourdomain/babelchat/ if your

Web server and Flash Communication

Servers are on different machines) for

Application Directory and add color_mc,

“Time to
wake up the

designer in you
and launch

Flash MX

”

http://www.fmctraining.com

30 • MXDJ.COM 10 • 2003

people_mc, light_mc to the Com-

munication Components array.

Then you need a map. A quick Google

search pointed me to the excellent Zoom

Map 1.2 by WISECAP on FlashKit

(www.flashkit.com/movies/Interfaces/Na

vigation/Zoom_Map-WISECAP-

5423/index.php). I downloaded the FLA,

took out the countries I was interested in,

colored them, and placed them on my

stage along with the Communication

Components. I turned each country’s

color filling into a MovieClip, so that they

could be clicked on. I called them

map_fr_mc, map_en_mc, map_it_mc,

and so on.

We need a couple more things:

• Create a dynamic text field and call it

readingIn_txt. This will hold the name

of the language the user is reading in.

• Create another dynamic text field, this time

multiline and HTML enabled, and name it

history_txt. This will be the chat history.

• Drag an FCScrollBar from the library

(Communication Components/Com-

munication UI Components) onto the

history_txt text field. It will snap into

place.

• Create an input text field and call it

msg_txt.

• Drag an FCPushButton component

from the library, call it send_pb. Using

the property inspector give it the label

Send, and Click Handler doSend.

• Drag an FCComboBox from the library

and name it writingIn_cb. In the labels

array, add Chinese, English, French,

German, Italian, Japanese, Portuguese,

and Spanish. In the Data array, add zh,

en, fr, de, it, ja, pt, and es. In the

Change Handler parameter, type

updateWritingInIndex.

• Add a title bar and whatever else you

need to make your application look

just the way you like it.

The last thing you need to create is a

MovieClip for the little guys. Insert menu,

New Symbol..., call it “LittleGuy”, click on

“Export for Actionscript”, and type

“LittleGuySymbol”in the Identifier. Add two

dynamic text fields, name_txt (black) and

nameShadow_txt (white, behind it and off-

set a little). Draw a little person, select the

part you want to change colors, and turn it

into a MovieClip. Call this MovieClip’s

instance bg_mc.

Okay, we’re ready to write the last bit

of code.

Client-Side Code

I like to keep my ActionScript files

external, but you can put this code in the

first frame of your movie within Flash MX

if you like. First of all, there’s some setup

code (see Code IX).

gLanguageStrings is a table that gives

us a string for each language code. We'll

use this later.

Then we overwrite the

onComponentsConnected method of our

simpleConnect_mc component. This was

introduced in 1.5 as a simple kind of

event notification to other scripts that

the SimpleConnect has set up all com-

munication components and is ready to

go. This is a good place for us to connect

our non-componentized parts of the

application.

First we save a reference to the main

NetConnection (saved in SimpleConnect

under main_nc) in a _global variable, for

easier access.

Then we get a local shared object (think

of it as a cookie) from the user’s hard drive.

If one of its properties is null it means that

the cookie was not found, so we assign

some default values to it. Then we adjust

the UI to reflect the saved values and we

call updateReading, passing the saved

reading language as a parameter. We’ll see

what updateReading does shortly.

Next, we define a simple Key listener

to trap ENTER keys, so that users will be

able to send a message just by pressing

enter at the end of it. We’ll see what the

“...add Chinese, English, French, German,
Italian, Japanese, Portuguese, and Spanish

“

http://www.americanmediatraining.com

10 • 2003 MXDJ.COM • 3332 • MXDJ.COM 10 • 2003

doSend function does shortly.

Then we need to write some code to

make the avatars work. We get a remote

shared object. (Do you remember it? It’s

the same we got on the server side). We

define my favorite onSync on it

(www.peldi.com/blog/000008.

html for more information), and we con-

nect it to the global NetConnection.

Now for the part I’m not proud of. We

need to be notified by SimpleConnect if

the user changes his or her user name,

but the SimpleConnect component does-

n’t throw such an event. One of the beau-

ties of free components is that you can

dig into their code and tweak it to your

needs, which is just what I had to do in

this case. Open the SimpleConnect com-

ponent in the library, go to line 204 (at

the end of the changedName function),

and add the following line:

this.onNameChanged(newName);

This will create a little event invocation

that we can trap by defining an

onNameChanged handler on our

instance of SimpleConnect, which is

exactly what we do in Code IX.

Another change we want to

make to SimpleConnect is in

line 174, in the onResult

handler for the connect

call. Add the following

line:

_global.userID = val;

This way we can

use the global ID

assigned to us by

the server-side

framework on the

client side. This is

what we do in the

body of onName

Changed: we save

the new user name in

our slot. This will trig-

ger an onSync on all

the clients and update

the UI accordingly.

The userColor compo-

nent offers a more complete

event architecture, so adding

the gFlashCom.userprefs.add

Listener(_root); line sets up _root as

a listener to it, which means that

whenever a new color is chosen from the

list, the function onColorChange() will be

invoked. We will define that function a lit-

tle bit later.

Next we define the doSend function

(see Code X).

Very simple. All we do is a client-to-

server call to the translateAndSend

Message function described in the serv-

er-side code section, passing in the user

name, the selected language code, and

the text of the message. Then we clear

the msg_txt textfield, and we’re ready for

a new message.

So how do we get the translated mes-

sage back from the server? Code XI

shows a function that will do the trick.

We call this function every time we

change the _global.readingIn variable.

What this function does is connect to the

correct shared object for the chosen lan-

guage and define a newMsg method on

it (that’s the one the server uses to send

us new translated messages as they

arrive!).

The function also makes a client-to-

server call to getHistory to retrieve the

history in the selected language – not

much more to do now (see Code XII).

First we define onRelease functions

for each country's movieclip. All they do

is call updateReading with the appropri-

ate language code and updatePosition,

defined in Code XII.

The updateReading function sets the

global readingIn variable to the selected

language, saves it in the local shared

object, updates the UI and calls

connectSharedObject.

The updatePosition function sets the

new position of this client's little guy to

the mouse’s position in the remote

Shared Object. This will trigger an onSync

that will update the UI for all the users.

We also save the new position in the local

shared object, for the next time we log

on.

The updateWritingInIndex is the

change handler for writingIn_cb, and just

saves the new selected writing language

in the local shared object.

Code XIII is the last bit of code, I

promise. First we define the

onColorChange function, which is called

whenever a user changes his or her color

in the userColor component. All we do is

update the usercolor variable in this

client’s slot of the littleGuys shared

object. This will trigger an onSync...you

know the drill.

The onSlotChanged is called by the

onSync whenever a new slot is created

or an existing slot is changed by anyone.

In it, first we check if this slot is new to us

(i.e., we didn’t attach a little guy for this

user). If it is, we attach a LittleGuySymbol

MovieClip for this user. If the user is our-

self (id == _global.userID), we populate

our slot of the shared object with the

data we know from the components on

the stage or the local shared object.

These changes will trigger another

onSync, which will call onSlotChanged

on our ID again. The second time, the

slot won’t be new to onSlotChanged

anymore, so we’ll skip this part (and

avoid an infinite loop, which is always

good).

After adding the new little guy (if nec-

essary), we update the UI with data from

the remote shared object: we update its

position, the text of the name, and the

color of the little guy.

The onSlotDeleted function is called

whenever a user leaves (remember how

we set the slot to null on the server side

in the onDisconnect function? It all

makes sense now). All we do in it is

remove the MovieClip for that user.

That’s it! Save your FLA, publish it,

open the SWF in two browser windows,

and you’re ready to start making interna-

tional friends!

Conclusion
There’s no doubt about it: doing this

stuff is hard. There’s a lot to think about,

lots of pieces that need to fit together.

Flash designers with no programming

background are asked to understand

client-server programming (among the

hardest kinds of programming IMHO), or

hard-core back-end XML coders need to

“lower themselves” to a tool originally

created for animators. Such is the world

we live in, my friends. I say embrace the

spectrum. Look at how much fun you

can have with a team of one! Judging by

the fact that Studio MX is the best-sell-

ing product in Macromedia history,

more and more people are doing the

same.

You are now able, in a few hours, to

build something that might have taken

months and months of development

only a few years ago. This is the power of

MX. Write your code in Dreamweaver;

ColdFusion does tons of work for you

(look at how easy it was to build that

powerful CFC); Flash Communication

Server handles most of the client/server

interaction for you (have you noticed

how powerful shared objects are?); and

Flash lets you create assets in no time

(also with the help of prebuilt compo-

nents). Finally, and perhaps most impor-

tant, you can draw from an enormous

pool of resources because the

Macromedia community of developers is

so huge and willing to share (look at my

maps, for example).

Good luck! Bonne chance! Viel glueck!

Buona fortuna! Boa sorte! and ¡Buena

suerte!

Giacomo “Peldi” Guilizzoni

(http://peldi.com) is a software developer

for Macromedia working on Breeze Live.

He maintains a Flash Communication

Server blog at http://peldi.com/blog/ and

often writes for Macromedia’s DevNet.

His grandparents do not understand a

single word of this article, but

nonetheless think it’s “neat.”

gguilizzoni@macromedia.com

“Flash designers
with no

programming
background are

asked to understand
client/server

programming

”

http://www.kaosweaver.com

c
o

d
e

 X
I

c
o

d
e

 X
II

c
o

d
e

 X
III

c
o

d
e

 V
II

I
c

o
d

e
 I

X
c

o
d

e
 X

c
o

d
e

 V
II

c
o

d
e

 V
I

c
o

d
e

 V

c
o

d
e

 I
c

o
d

e
 I

I
c

o
d

e
 I

II
c

o
d

e
 I

V

10 • 2003 MXDJ.COM • 3534 • MXDJ.COM 10 • 2003

<cfcomponent>
<cffunction name="translate" access="remote" returnType="any">
<cfargument name="src" type="string" default="">
<cfargument name="code" type="string" default="">

<CFINVOKE
WEBSERVICE="http://www.xmethods.net/sd/2001/BabelFishService.wsdl"
METHOD="babelFish" RETURNVARIABLE="aString">
<CFINVOKEARGUMENT NAME="translationmode" VALUE="#code#"/>
<CFINVOKEARGUMENT NAME="sourcedata" VALUE="#src#"/>
</CFINVOKE>

<cfreturn aString>
</cffunction>
</cfcomponent>

load("NetServices.asc");

this.gatewayConnection =
NetServices.createGatewayConnection("http://localhost/flashser-
vices/gateway");
var babelService =
this.gatewayConnection.getService("cfdocs.babelfish", this);
babelService.translate({code:"it_en", src:"Ciao"});

function translate_Result(val) {
trace("val:"+val);
}

// BabelFishResultHandler Object
//+
BabelFishResultHandler = function(owner, secondPass,
sentenceCounter)
{
this.owner = owner;
this.secondPass = secondPass; //might be undefined
this.sentenceCounter = sentenceCounter;
}
BabelFishResultHandler.prototype.translate_Result = function(val)
{
if (this.secondPass == undefined) {
this.owner.onResult(this.owner.username, this.owner.hexColor, val,
this.sentenceCounter);
} else {
var gatewayConnection =
NetServices.createGatewayConnection("http://localhost/flashser-
vices/gateway"
);
var babelService = gatewayConnection.getService("cfdocs.babelfish",
new
BabelFishResultHandler(this.owner, null, this.sentenceCounter));
babelService.translate({code:this.secondPass, src:val});
}
}
BabelFishResultHandler.prototype.translate_Status = function(info)
{
trace(info.code);
}
//-

// BabelFishTranslator Object
//+
BabelFishTranslator = function(from, to)
{
this.from = from;
this.to = to;

if (this.from == "en") {
if (this.to != "en")
this.firstPass = "en_"+this.to;
} else {
if (this.to != this.from) {
this.firstPass = this.from+"_en";
if (this.to != "en")
this.secondPass = "en_"+this.to;
}
}
this.gatewayConnection =
NetServices.createGatewayConnection("http://localhost/flashser-
vices/gateway"
);
}
BabelFishTranslator.prototype.onResult = function(val)
{
//stub
}
BabelFishTranslator.prototype.translate = function(username,
hexColor,
theString, sentenceCounter)
{
this.sentenceCounter = sentenceCounter;
this.username = username;

this.hexColor = hexColor;
if (this.firstPass == undefined) {
this.onResult(this.username, this.hexColor, theString,
this.sentenceCounter);
} else {
var babelService =
this.gatewayConnection.getService("cfdocs.babelfish", new
BabelFishResultHandler(this, this.secondPass,
this.sentenceCounter));
babelService.translate({code:this.firstPass, src:theString});
}
}
//-

application.onAppStart = function()
{
application.languageCodes = ["en", "zh", "fr", "de", "it", "ja",
"pt", "es"];

application.translatorObjects = new Object();
application.sentenceCounter = 0;
application.languageSharedObjects = new Object();

for (var i in application.languageCodes) {
if (typeof(application.languageCodes[i]) == "function")
continue;

application.languageSharedObjects[application.languageCodes[i]] =
SharedObject.get("lang_"+application.languageCodes[i], false);
application.languageSharedObjects[application.languageCodes[i]].lang
= application.languageCodes[i];
application.languageSharedObjects[application.languageCodes[i]].last
Sent = 0;
application.languageSharedObjects[application.languageCodes[i]].his-
tory = "";
application.languageSharedObjects[application.languageCodes[i]].queu
e= new Array();
application.languageSharedObjects[application.languageCodes[i]].deli
verInOrder = function(msg, counter)
{
if (counter == (this.lastSent+1)) {
this.history += msg;
this.send("newMsg", msg);
this.lastSent++;
var i = (this.lastSent+1);
while (this.queue[i] != undefined) {
this.history += this.queue[i];
this.send("newMsg", this.queue[i]);
delete this.queue[i];
this.lastSent = i;
i++;
}
} else {
//add To queue
this.queue[counter] = msg;
}
} //deliverInOrder
} //for

application.littleGuys_so = SharedObject.get("littleGuys", false);
}

application.onConnectAccept = function(client) {
application.littleGuys_so.setProperty("u"+client.__ID__, {x:100,
y:100});
}

application.onDisconnect = function(client) {
application.littleGuys_so.setProperty("u"+client.__ID__, null);

if (application.clients.length == 0) {
for (var i in application.languageSharedObjects) {
if (typeof(application.languageCodes[i]) == "function")
continue;
application.languageSharedObjects[i].history = "";
}
}
}

Client.prototype.translateAndSendMessage = function(username, lang,
msg)
{
application.sentenceCounter++;
for (var i in application.languageCodes) {
if (typeof(application.languageCodes[i]) == "function")
continue;

if
(application.translatorObjects[lang+"_"+application.languageCodes[i]
] ==
undefined) {
application.translatorObjects[lang+"_"+application.languageCodes[i]]
= new

BabelFishTranslator(lang, application.languageCodes[i]);
application.translatorObjects[lang+"_"+application.languageCodes[i]]
.onResul
t = function(username, hexColor, val, counter) {

var mesg = hiliteURLs(val);

mesg = "" + username + ":
<i>("+this.from+")</i>: " + mesg + "
\n";

application.languageSharedObjects[this.to].deliverInOrder(mesg,
counter);
} //onResult
} //if

var cglobal = gFrameworkFC.getClientGlobals(this);
if (cglobal == undefined) {
cglobal = new Object();
cglobal.usercolor = "0x000000";
}
var hexColor = "#"+cglobal.usercolor.substring(2, cglobal.usercol-
or.length);

application.translatorObjects[lang+"_"+application.languageCodes[i]]
.transla
te(username, hexColor, msg, application.sentenceCounter);
} //for
}

//Called by the clients
Client.prototype.getHistory = function(lang) {
return application.languageSharedObjects[lang].history;
}

gLanguageStrings = {en: "English", de: "Deutch", it: "Italiano", zh:
"Chinese", ja: "Japanese", pt: "Portuguese", es: "Espanol", fr:
"French" };

simpleConnect_mc.onComponentsConnected = function() {
_global.nc = this.main_nc;

local_so = SharedObject.getLocal("BabelChat", "/");
if (local_so.data.readingIn == null) {
local_so.data.readingIn = "en";
local_so.data.writingInIndex = 1;
local_so.data.x = 110;
local_so.data.y = 110;
}
writingIn_cb.setSelectedIndex(local_so.data.writingInIndex);
updateReading(local_so.data.readingIn);

this.typeListener = new Object();
this.typeListener.onKeyDown = function() {
if (((Selection.getFocus()+"") == (msg_txt+"")) && (Key.getCode() ==
Key.ENTER))
doSend();
}
Key.addListener(this.typeListener); //Little Guys stuff

//+
littleGuys_so = SharedObject.getRemote("littleGuys", _global.nc.uri,
false);
littleGuys_so.firstTime = true;
littleGuys_so.onSync = function(list) {
if (this.firstTime) {
this.firstTime = false;
for (var i in this.data)
onSlotChanged(i);
}
for (var k in list) {
if ((list[k].code == "change") || (list[k].code == "success"))
onSlotChanged(list[k].name);
else if (list[k].code == "delete")
onSlotDeleted(list[k].name);
}
}
littleGuys_so.connect(_global.nc);

simpleConnect_mc.onNameChanged = function(val) {
littleGuys_so.data[_global.userID].username = simpleConnect_mc.user-
name;
}

gFlashCom.userprefs.addListener(_root);
//-
}

//Send button handler
function doSend() {
_global.nc.call("translateAndSendMessage", null,
simpleConnect_mc.username, writingIn_cb.getSelectedItem().data,
msg_txt.text);
msg_txt.text = "";
}

function connectSharedObject() {
history_txt.htmlText = "";
lang_so = SharedObject.getRemote("lang_"+_global.readingIn, _glob-
al.nc.uri,
false);
lang_so.newMsg = function(msg) {
history_txt.htmlText += msg;
history_txt.scroll = history_txt.maxScroll;
}
lang_so.connect(_global.nc);

var res = new Object();
res.onResult = function(val) {
history_txt.htmlText = val;
history_txt.scroll = history_txt.maxScroll;
}
_global.nc.call("getHistory", res, _global.readingIn);
}

//Map onRelease handlers
map_fr_mc.onRelease = function() { updateReading("fr");
updatePosition(); }
map_es_mc.onRelease = function() { updateReading("es");
updatePosition(); }
map_en_mc.onRelease = function() { updateReading("en");
updatePosition(); }
map_pt_mc.onRelease = function() { updateReading("pt");
updatePosition(); }
map_de_mc.onRelease = function() { updateReading("de");
updatePosition(); }
map_it_mc.onRelease = function() { updateReading("it");
updatePosition(); }
map_zh_mc.onRelease = function() { updateReading("zh");
updatePosition(); }
map_ja_mc.onRelease = function() { updateReading("ja");
updatePosition(); }

function updateReading(lang) {
_global.readingIn = lang;
local_so.data.readingIn = _global.readingIn;
readingIn_txt.text = gLanguageStrings[_global.readingIn];
connectSharedObject();
}

function updatePosition() {
littleGuys_so.data[_global.userID].x = _root._xmouse;
littleGuys_so.data[_global.userID].y = _root._ymouse;
local_so.data.x = _root._xmouse;
local_so.data.y = _root._ymouse;
}

//Change handler for writingIn_cb
function updateWritingInIndex() {
local_so.data.writingInIndex = writingIn_cb.getSelectedIndex();
}

//Little Guys Stuff
//-
function onColorChange(val) {
littleGuys_so.data[_global.userID].usercolor =
gFlashCom.userprefs.color;
}

function onSlotChanged(id) {
if (_root["littleGuy_"+id] == null) {
root.attachMovie("LittleGuySymbol", "littleGuy"+id, id.sub-
str(1)/1+100);
root["littleGuy"+id].nameShadow_txt.autoSize = true;
root["littleGuy"+id].name_txt.autoSize = true;
if (id == _global.userID) {
littleGuys_so.data[id].username = simpleConnect_mc.username;
littleGuys_so.data[id].usercolor =
color_mc.ColorCombo.getSelectedItem().data;
littleGuys_so.data[id].x = local_so.data.x;
littleGuys_so.data[id].y = local_so.data.y;
}
}
root["littleGuy"+id]._x = littleGuys_so.data[id].x;
root["littleGuy"+id]._y = littleGuys_so.data[id].y;
root["littleGuy"+id].nameShadow_txt.text =
littleGuys_so.data[id].username;
root["littleGuy"+id].name_txt.text = littleGuys_so.data[id].user-
name;
var c = new Color(_root["littleGuy_"+id].bg_mc);
c.setRGB(littleGuys_so.data[id].usercolor);
}

function onSlotDeleted(id) {
root["littleGuy"+id].removeMovieClip();
}
//+

10 • 2003

he Levels dialog is commonly one

of those dialogs that users open to

see what it is, look at it for a few

seconds, don’t understand a thing, and

then close it right away. The more ambi-

tious users might actually try to figure it

out by clicking on different things left

and right but they don’t understand why

things happen the way they happen, so

they close it.

In this article, I explain what Levels

are and how to use them properly. Levels

are not specific to Fireworks. Pretty much

any program that offers image manipula-

tion includes a Levels command that

does the same thing, and even looks very

similar. For example, the Levels command

in Photoshop is the same as it is in

Fireworks (although the one in

Photoshop has more features).

I don’t fully agree with the classifica-

tion of Levels as being a filter but since

Fireworks lists it as such in its menu sys-

tem, I’ll call it a filter here too.

Very rarely, if ever, will you need to apply

Levels to a vector object. Levels are some-

thing you adjust on a photo most of the

time. However, since you can use it on vec-

tors as well, I call the target item an object.

Applying Levels
The Levels filter in Fireworks can be

applied to bitmap and/or vector objects

depending on where you apply it from. If

you apply it from Filters-> Adjust Color->

Levels to a bitmap, it can be used only on

bitmaps. If you actually have a vector

object selected, Fireworks will ask you if

it’s okay to convert it. If you add Levels to

an object as a live effect from the

Property Inspector, this object can be

either a vector or a bitmap.

Unless you have a very specific reason

not to do so, it is preferable to apply

Levels as a live effect. The main advan-

tage is that you can remove it and/or

alter it at any time.

A typical sequence of applying Levels

would be:

1. Select an object in your document

with the Pointer tool.

2. In the Property Inspector click on the

plus (+) sign on the Effects area and

select: Adjust Color-> Levels…

Histogram
If I told you to take each pixel of the

selected object and record its brightness,

it would take you some time, but you

could do it. The brightness of each pixel

has a value of 0–255, with 0 being black

and 255 being white.

Now, if I told you to take this list of val-

ues and make a graph, the first thing you

would need to know would be what each

axis of the graph represents. So let’s agree

that the horizontal axis represents bright-

ness and the vertical the amount of pixels.

If you plot each pixel’s brightness on such a

diagram, you would have what is known as

a histogram. In a way, you can say this his-

togram is the blueprint of the brightness

(of the selected object).

This is what Levels does, only a bit

faster than you and I can. It examines every

pixel of your selected object and displays

its histogram. And it can do so for each

channel individually (Red, Green, Blue) and

of course for the composite RGB.

Seeing this histogram (see Image I)

gives you a pretty good idea of the overall

brightness and contrast of a photo. For

example, a big bump on the left side

means that you have a lot of dark pixels.

This may be all right, depending on the

subject, but it may not (for example, the

shot may be too dark). Some high-end

consumer/pro digital cameras give you the

histogram of a photo you take on the fly.

All this information is valuable just to

look at and most of the time the first thing

you do when you’re doing photo retouch-

ing is to check the Levels. But all this data

becomes more valuable if you can manip-

ulate it and take advantage of it. I will

show you how you can do just that.

Input/Output Levels
These two work side by side. What

you do here is take a brightness range

and map it to a specific brightness. I’ll dis-

cuss this later.

The Input Levels have three values

that from left to right in Image 1 are

black, gamma, and white. Some users

prefer to think of gamma as exposure, or

midtones. In either case, it maps the mid-

gray. The tooltip of those fields in

Fireworks calls them minimum intensity,

gamma, and maximum intensity respec-

tively. But that’s just a fancy way of say-

ing black, mid-gray, and white.

By default, their values are 0, 1.00,

and 255. Interesting things happen here

if we start changing them. I can say that

Black’s brightness isn’t 0, it’s 25. That

means that every pixel that has a bright-

ness between 0 and 25 will become black

because I say so – by setting the input

level of black to 25. Or, I can say that

white’s brightness isn’t 255, but 200. So,

every pixel that has a brightness between

200 and 255 will turn pure white.

You can set these values directly in

the text fields, or you can use the sliders

at the baseline of the histogram. As you

can see, there are black, white, and mid-

gray sliders. Those sliders and the text

fields of the Input Levels are connected.

It is obviously easier to use the slider

because by doing so you can see how

you group the brightness and how many

pixels will be affected. For example, when

you move the black slider to the right all

the pixels to the left will turn black.

dialogs

Understanding Levels
Your first step to photo correction

by kleanthis economou

t

36 • MXDJ.COM

im
a

g
e

 I

10 • 2003 MXDJ.COM • 37

But do they turn really black? That

depends on the output levels. Using out-

put levels, you essentially define what is

black and what is white for you. You

define the brightness of “black” and the

brightness of “white.” We have two fields

that hold the new value of black and the

new value of white. By default, those val-

ues are as we know them, 0 and 255

respectively. But nothing can stop you

from changing them to something else.

Again, there are two sliders that can

make your life easier, allowing you to

choose from the black-to-white gradient.

The gamma setting represents the

brightness level of the medium-gray

value in the image. By making changes to

this, you can change the amount of con-

trast in the image by lightening and dark-

ening grays (also known as midtones)

without affecting the shadows and high-

lights. By default when you alter the min-

imum or maximum intensity, the gamma

value changes automatically to be in the

middle. You can, however, change this by

entering a gamma value manually, or by

using the gray slider.

As an example of using input and out-

put levels, let’s say that I change the mini-

mum intensity (black) of the Input Levels

to 50, and the minimum intensity (black) of

the output levels to 128. What happens?

For one, all the pixels in my image that

have a brightness of 0–50 will have the

same minimum intensity (black), but since I

tell the output levels that minimum inten-

sity (black) for me has a brightness of 128,

they will turn to 128 (in other words, gray).

So, input and output levels determine

how many pixels will be affected by spec-

ifying a range of input brightness, and

how much their brightness will change

by specifying what brightness those pix-

els will be mapped to.

An important thing to note here and

to remember about levels is that when

you specify a range of pixels, the bright-

ness for all of the pixels is remapped with

the same intensity. In our example it

doesn’t matter if the brightness of a pixel

is 0 or 50, it will be mapped to 128. This is

the fundamental difference between lev-

els and curves.

Eyedroppers
Understanding how the histogram is

conducted and how to use the input/out-

put levels is all you really need. The eyedrop-

pers are just a convenient way to set the

Input Levels by sampling your target object.

The black eyedropper can be used to

sample an area (one pixel really) on your

target object. The brightness of this

pixel will be used as the value of the

minimum intensity (black) of the input

levels. Likewise, by using the white eye-

dropper you can specify the maximum

intensity and by using the gray eyedrop-

per you can specify the gamma.

Auto Levels
The Auto button on the dialog does

exactly the same thing as the auto levels

filter. This is a no-brainer way to alter the

levels of an image.

Auto levels go into each channel of

the image and change the input levels.

The minimum intensity (black) is set to

the darkest pixel in the channel; the max-

imum intensity (white) is set to the

brightest of the pixels in the channel,

while the other shades of gray are

stretched to fill out the spectrum. This

method of setting the minimum and

maximum intensity is also known as

auto-black point and auto-white point.

Personally, I never use auto levels. The

main reason is that I can achieve better

results by looking at the histogram and

making the adjustments myself. However,

when you go into the Levels dialog, you

can try Auto Levels. If you’re happy with

the result, by all means use it.

Other Notes
If you want to use levels on pixel selec-

tions, you obviously can’t use them as a

live effect. However, this is not the only

problem. Levels will be applied only to the

pixels you selected, but the histogram

showing on the dialog is of the whole

image and not just the pixels you’ve

selected. In other words, in my opinion

this renders the histogram useless .

Kleanthis Economou has been a Web

developer/software engineer since 1995

and specializes in .NET Framework

solutions. He is a contributing author in

various Fireworks publications and is the

technical editor of the Fireworks MX

Bible. As an extension developer,

Kleanthis contributed two extensions to

the latest release of Fireworks.

kleanthis.economou@

projectfireworks.com

Logo
Browser
Project

acromedia FreeHand MX is an

indispensable tool for

Macromedia Flash MX users. I

have used FreeHand as an

important part of my

Macromedia Flash arsenal

since I took up Flash animation –

way back with the release of

Macromedia Flash 4.

acromedia FreeHand MX is an

indispensable tool for

Macromedia Flash MX users. I

have used FreeHand as an

important part of my

Macromedia Flash arsenal

since I took up Flash animation –

way back with the release of

Macromedia Flash 4.

Using FreeHand MX with Macromedia Flash

The

Mby Joe Sparksbb

MXDJ.COM • 3910 • 2003

The Action pop-up menu reads “Go To

and Stop,” which is the default setting.

The Parameters pop-up menu reads

“Page 2” – the page you linked to. “Event”

is set to “on (press),” which simply means

that the action will take place when the

user clicks on the button region.

Notice that the “Link” value is still

empty (see Image III). Even though the

“Go To and Stop” Macromedia Flash

action does not require a Link setting (it

uses the Parameter setting “Page 2”), I am

going to add a Link setting anyway. I do

this just in case I might need to export

this presentation as HTML using the

FreeHand “Publish as HTML...” feature (see

Image IV).

Note: I will go deeper into the

Navigation Panel when I work on special

buttons for the logo destination pages in

the next part of this project.

To complete the entire menu of but-

tons, I repeat the process for each logo

and forge links to each of the logo pages.

After creating all of the buttons and logo

pages, I drag the button layer down the

Layers panel, moving the yellow buttons

behind all of the menu artwork and mak-

ing the buttons’ regions “invisible.”

Using Different Actions from
the Navigation Panel

You can build interactive, Web-ready

presentations right inside FreeHand MX.

The Navigation panel gives the FreeHand

user the power to create interactive

HTML and feature-rich Macromedia Flash

movies. Using built-in Macromedia Flash

export capabilities, FreeHand designers

can now build sophisticated Macromedia

Flash movies that are ready for publish-

ing without ever opening Macromedia

Flash.

The heart of FreeHand/Macromedia

Flash authoring capability is on the

Navigation panel. The Action settings

provide complex interactivity, special fea-

tures (like printing), and animation play-

back controls.

Take a look at our first sample Logo

page, which offers several options to the

user (see Image V).

The first button, labeled “Back to logo

list,” is simply another jump-to-page but-

ton, which you can create with the Action

tool – exactly as you created the first but-

ton on the main menu.

The next three buttons are different.

For the next button, “Print this logo,” use

the Print action in the Navigation panel

to activate this print button as follows:

1. Open the Navigation panel and select

the button graphic. Notice the Action

pop-up menu is set to None by

default.

2. Choose Print from the Action pop-up

menu.

3. Select the page to print from the

Parameters pop-up menu. (In this case

it is Page 2, the page you are now edit-

ing. It could be any page in your docu-

ment.)

4. Optional: Choose a layer to target for

printing. In this case, I pick the “Logos”

layer.

The Macromedia Flash presentation

now has the capability to print. If you

wish, you can export a Macromedia Flash

movie right now and test it.

The next two buttons, “View at higher

resolutions” and “Download FreeHand

source file,” access external files from our

Macromedia Flash presentation using the

Get URL action. The “View at higher reso-

lutions” button accesses a GIF named

Logo1a.gif. The “Download FreeHand

source file” button accesses a zipped

FreeHand file called Logo1a.zip.

Attach the Get URL action to these

buttons as follows:

1. Open the Navigation panel and select

the button graphic.

2. Type the URL of the high resolution file

in the Link field. (This link will serve

double duty if you choose to export

your FreeHand document as HTML.)

For this example, I designated the fol-

lowing relative URL:

logoart/Logo1a.gif

This relative URL lets me run my

Macromedia Flash presentation just

about anywhere. The Macromedia

Flash movie will point the browser to a

folder named “logoart” that exists in

the same folder as the SWF. This will

work on a Web site or from my hard

disk.

3. Choose “Get URL” on the Action pop-

up menu.

4. Optional: Choose the page target for

the URL on the Parameters pop-up

menu. I chose “_blank” because I want

the URL to open in a new window.

im
a

g
e

 I
im

a
g

e
 I

I
im

a
g

e
 I

II
im

a
g

e
 I

V
im

a
g

e
 V

im
a

g
e

 V
I

im
a

g
e

 V
II

10 • 200310 • 2003

I often have FreeHand open while

working in Macromedia Flash. I use

FreeHand daily to draw complex shapes,

copy them, and simply paste them right

into Macromedia Flash.

The first animated character I creat-

ed in Macromedia Flash was a certain

floating skull named “The Radiskull.” I

created this character using FreeHand 7

before I started animating in

Macromedia Flash. I set up all of my ani-

mated layers and movable parts in

FreeHand. Check out the original article

about using FreeHand 7 on the Radiskull

& Devil Doll animation series

(http://joesparks.com/radiskull/

production/productionnote_01.htm).

Little did I know that several million

people would soon view this silly

FreeHand illustration!

Since those days, FreeHand has come

a long way. The Macromedia Flash inte-

gration is much tighter and more conven-

ient. Macromedia Flash MX does a great

job supporting native FreeHand files, and

vice versa. The new artistic effects and

vector effects are amazing and very use-

ful.

As you will discover, Macromedia

Flash support has come so far with

FreeHand MX that in some cases, you do

not even need to use Macromedia Flash

to create a complete interactive

Macromedia Flash movie. FreeHand MX

contains authoring support for

Macromedia Flash with interactive tools

like the Action tool and the Navigation

panel. These let you set up buttons and

frames with Macromedia Flash actions

that respond to the mouse and anima-

tion – and much more.

I gave FreeHand MX a good workout

on a small design project, creating pro-

motional materials and assets for San

Francisco DJ Matt Hite. This tutorial

explores how FreeHand MX can be a cen-

tral tool for creating Macromedia Flash

media. You will build an interactive logo

browser – a simple interactive presenta-

tion with FreeHand MX that you will pub-

lish and view as a Macromedia Flash

movie.

Introduction
Let’s say I designed a small assort-

ment of logos with FreeHand MX. Now I

want to create a useful presentation of

the logos, providing a quick overview

and access to the source files. I decide to

try out the Macromedia Flash authoring

features built into FreeHand, using them

to build a simple interactive browser. The

end result of this FreeHand document

will be a SWF that plays in Macromedia

Flash Player.

In the Logo Browser

project, you will learn the

following FreeHand MX

tools and concepts:

• Using the Action

tool to define

Macromedia Flash

actions inside

FreeHand MX

• Using different

actions from the

Navigation panel

• Creating and using

FreeHand MX symbols

• Using Swap Object to switch a

symbol in the document

• Previewing a Macromedia Flash

movie using the Test Movie button in

the Controller

• Exporting Macromedia Flash Movies

(saving them as SWF files)

• Fixing Macromedia Flash/FreeHand

rendering differences

The browser needs a menu screen

with buttons that link to pages dedicated

to each logo.

The Action tool provides a simple

way to specify a relationship between

objects in your document and pages.

You can quickly drag links between but-

ton graphics and screens and then fine-

tune their relationships with the

Navigation panel.

I started off this Logo Browser project

by completing the menu screen and one

sample logo destination page. I only cre-

ated one logo destination page at this

stage in the project (instead of the five

pages we need) because I want to per-

fect that page before duplicating it for

the remaining logos. Image I shows the

two pages, side by side, as they appear in

FreeHand MX running on Mac OS X.

Now I need to create a button or

“hotspot” definition on the menu page

that will link a logo menu item to its des-

tination page. Here are the steps I took to

create the button link. Refer to these

steps as you build your own similar proj-

ect.

1. Choose an object to serve as the but-

ton area. I could choose any element

already on this page (such as a text or

graphic object) to hold the link.

Instead, I am going to define a larger

clickable area by drawing a big rectan-

gle in a new layer. This new object will

soon serve as an “invisible” button. Take

a look at the Layers panel (see Image

II), where I have created a layer named

“buttons” to store the rectangle.

2. Use the Action tool to drag a link from

the button object to the destination

page. Click the Action tool in the Tools

panel. Click the button object and hold

the mouse down as you drag it toward

the destination page. Release the

mouse when your pointer is over the

page you want to link to. This will cre-

ate a default link that you can see and

modify in the Navigation panel (see

Image III).

3. Review the Action settings in the

Navigation panel. At this point, I

could simply export a Macromedia

Flash SWF and browse the link, but

first, I want to double-check the

results produced by the Action tool.

In Image III, you can see the

Navigation panel.

MXDJ.COM • 4140 • MXDJ.COM

This article

originally appeared

on the Macromedia

Developer Center at

www.macromedia

.com/go/developer.

the page you wish to duplicate by using

the Go-to-page pop-up menu at the bot-

tom-middle of the document window or

you can use the Document page to

select the page directly. Once you are

sure you have the right page selected,

you may use the Duplicate command

from the Document pop-up menu (see

Images VII and VIII).

Now I am ready to customize each

duplicated page for the rest of the logo

design. I will use swap symbol to change

the logo first. Here are the steps:

1. Select the symbol that you want to

swap.

2. Open the library and pick the object

you wish to swap with. In this case, I

have selected a logo in the document

and then selected the second logo in

my library (see Image IX).

3. Click the Swap Symbol button.

Immediately the instance will change

to the selected symbol in the library.

The new symbol instance will inherit

all of the scale, skew, and other attri-

butes of the previous instance (which

can be good or bad, depending on the

native aspect ratio of the two symbols)

(see Image X).

That’s all there is to swapping a sym-

bol instance. Now I need to update the

rest of this page. All I need to do is

change the title from “Logo 1a” to “Logo

1b” and modify the links on the three cus-

tom buttons.

Modifying the buttons is very simple.

The “Back to Menu” button is already

done, since that button always goes to

the same page. For the other three but-

tons, I simply open the Navigation panel

and make the following edits:

1. Choose Print button and pick “Page 3”

on the Properties pop-up menu

2. Choose View at Higher Res button and

change the link to

“logoart/Logo1b.gif”

3. Choose Download Source button and

change the link to

“logoart/Logo1b.zip”

One logo page down, and three more

to go! I simply repeat the above steps

using the proper logo and files names

(swap symbol, change title, edit buttons)

for each of the remaining pages.

To complete this project, there’s

only one more thing left to do. I must

go back to the main menu page and

make buttons for the last four logos. I

must draw four more button regions

and use the Action tool to link to my

new logo pages (performing the steps

outlined at the beginning of this proj-

ect article). When I am done, the five

buttons will appear as shown in Image

XI.

In this case, I decided to simply hide

this layer of buttons behind all of the

other layers. I didn’t use the layer for any-

thing else, and the end results work great

in Macromedia Flash.

Previewing the Macromedia
Flash Movie Using the Test
Movie Window

As you develop Macromedia Flash

projects with FreeHand, you can test your

Macromedia Flash work from within the

FreeHand application. This can save time

and development cycles for you by

removing the extra steps of

exporting/saving, naming, finding the

exported file, and viewing with

Macromedia Flash Player.

To preview your FreeHand document

as a Macromedia Flash movie:

1. From the Window menu, choose

Movie > Test.

2. Control playback with tools found on

the Movie Preview window and/or the

Controller toolbar.

FreeHand will convert the docu-

ment into a Macromedia Flash movie

file (a SWF file), and this may take a lit-

tle time to process, depending on the

size and complexity of your project.

After this is complete, FreeHand will

open a new window for playback.

FreeHand users who are working on

Macromedia Flash movies should open

the Controller toolbar (Windows >

Toolbars > Controller), because it pro-

vides quick access to key tools for

Macromedia Flash authoring. In Image

XII, the Movie Preview window and the

Controller toolbar are featured.

As soon as the Movie window opens,

you may begin testing your Macromedia

Flash movie. You can try out your

Macromedia Flash Actions, click your but-

tons, play back animations, and so on.

The Movie playback controls on both the

Preview window and the controller let

you stop, rewind, step backward, play,

im
a

g
e

 V
II

I
im

a
g

e
 I

X
im

a
g

e
 X

im
a

g
e

 X
I

im
a

g
e

 X
II

im
a

g
e

 X
II

I
im

a
g

e
 X

IV

10 • 200310 • 2003

5. Optional: Choose an event to trigger

this action from the Event pop-up

menu. In this case, I wanted a standard

mouse click to trigger the action

(when the user releases the mouse on

the button), so I chose “on (release).”

For the last button, “Download

FreeHand source file,” the process is

identical. I simply specified a different

URL, in this case:

logoart/Logo1a.zip

By zipping up the FreeHand file, the

browser handles the file as a user down-

load. The file will be transferred to the

user’s hard drive.

Creating and Using
FreeHand MX Symbols

Symbols give you a way to store

graphics and objects in a library and

then use “instances” of these symbols

throughout your FreeHand document.

This is very similar to the symbols con-

cept found in Macromedia Flash and

Fireworks. The benefits can be enor-

mous. Typically, you create a symbol for

an item that you intend to use in multi-

ple places. This saves memory and file

size, because FreeHand only needs to

store one copy of the object, even

though it appears in multiple places and

pages. The larger benefit comes when

you need to edit an element in your

symbol library. You edit the symbol

once, and the element automatically

updates everywhere it appears in your

document. For example, you could have

a special date symbol or a legal notice

symbol that appears on every page.

These are examples of elements that

change frequently, therefore they are

good candidates for turning them into

symbols.

In the logo browser, I am going to

store the logo designs as symbols. This is

a very easy process:

1. Open the Library panel. In the

work space, select the object you

wish to make into a new symbol. In

Image VI, I have selected the first

logo.

2. Drag the object from the

FreeHand work space into the

Library list to create a new

symbol from your

selection. Your

original selec-

tion will trans-

form into an instance

of the new symbol. You can

also perform this task by

choosing Modify > Symbol >

Convert to Symbol, or by pressing

F8.

You can also create a new

symbol by clicking the Create

Symbol button at the bottom of the

Library palette, but your selection will

not become an instance of that sym-

bol. In other words, a symbol will be

added to the Library, based on your

selection, but the selection itself will

remain a FreeHand object. This is the

equivalent of choosing Modify >

Symbol > Copy to Symbol in the

FreeHand menu.

Your new symbol will appear in the

library with a default name.

3. Rename the new symbol to a mean-

ingful name. You can click the symbol

name to edit it, or select the symbol

and choose “Rename” in the Library

panel pop-up menu.

4. Add as many symbols as you need. For

the logo browser, I added all of the

logos from the menu page.

5. Manage your symbol library by creat-

ing folders or groups to contain sym-

bols. Click the New Group button at

the bottom of the Library panel to add

a group folder to the library.

6. Rename the folder and drag symbols

into it.

7. To edit a symbol, select it in the Library

Panel and choose “Edit” from the panel

pop-up menu. A new window will

open for the symbol.

8. Edit the symbol with FreeHand tools

and close the window when you are

finished. FreeHand will update all

instances of the symbol in the docu-

ment.

9. To use the symbol anywhere in your

FreeHand project, simply drag the

symbol from the Library panel onto

your document. This is exactly what I

did on the destination page for the

first logo.

Using Swap Object to Switch
a Symbol in the Document

When you need to remove a symbol

on a page and replace it with another

from your library, you really only have

two choices:

1. Delete the existing symbol instance

from the page. Drag out its replace-

ment and slide, scale, rotate, or nudge

it to position the replacement symbol

somewhere near the location of the

original one.

2. Swap the symbol with one button

click. Swapping a symbol is often far

better than the previous alternative.

Before getting into the symbol swap-

ping, I need to duplicate some pages,

which will give us some logo symbols to

swap.

At this point in the logo browser proj-

ect, I have completed all of the features

on our logo destination page. All I need

to do now is duplicate this page four

times and customize it for each of the

remaining logos.

Here’s a quick overview of selecting

and duplicating pages. You can select

MXDJ.COM • 4342 • MXDJ.COM

create a backup of the symbol before you

convert the lines to fills. To convert lines

to fills, simply select the lines you wish to

convert, and select the menu command:

Modify > Shape > Convert Lines to Fills.

In general, it is very important to move

your “actual size” (100% scale) artwork into

a symbol before you scale it to a parent

time line, especially if you intend to con-

vert lines to fills. If you select actual vec-

tors and scale the original artwork down in

Macromedia Flash (as opposed to scaling

a symbol down) you can destroy, erode, or

even delete vectors altogether.

So what does this have to do with the

FreeHand logo, which displays differently

in the Macromedia Flash export?

Knowing the above information about

line widths, export the logo as a SWF and

import it into Macromedia Flash MX. This

way, you can see how FreeHand groups

the vectors during the conversion

process (see Image XVII).

Our goal is to make the Macromedia

Flash version of the logo look more like it

does in FreeHand when rendered at

smaller scales in the Logo Browser proj-

ect. As a first test, let’s put this whole

logo into a new Macromedia Flash sym-

bol and scale it down (see Image XVIII).

Remember that the “Primary

Solution” called for putting the graphics

into a symbol, but FreeHand has already

put the stars in a symbol for us, thereby

causing a minimum line size problem.

Those tiny stars are so tiny, the fill gets

obscured by the smallest line width

inside Macromedia Flash.

It is time to bring out the Extreme

Solution!

In the example shown in Image XIX, I

simply selected the lines on the most fre-

quently used star symbol and used the

“Convert Lines to Fills” command. Image

XX shows the results of that maneuver.

As you can see, many of the stars

around the logo now appear almost

exactly as they do inside the FreeHand

window. We can do the same trick on the

remaining stars symbols, and call this

operation a success.

You may encounter the inverse prob-

lem to the minimum line width, which is

the maximum line width problem! There

are situations where you scale art work

higher than 100%, and the lines appear

too thin. You can use the techniques dis-

cussed here to deal with this problem too.

You could instead use an alternate

route: Convert to Image.

However, there is another option

inside of FreeHand MX. Although this

solution is neither the most elegant solu-

tion nor the best choice for file size and

quality issues, it is quick, easy, and very

reliable. Find this feature, called “Convert

to Image,”in FreeHand, on the menu:

Modify > Convert to Image.

To turn any FreeHand selection into a

bitmap, choose Convert to Image from

the Modify menu. Say goodbye to vectors

and hello to safe, reliable bitmaps! Never

use your original: always perform this

operation on a copy of your original. You

do not want to lose your vectors forever.

By converting the problem logo to an

image (bitmap), your Macromedia Flash

presentation would look the same as it

does in FreeHand. However, you should

consider this a hack method with some

drawbacks: you increase file size and your

printing quality suffers. In short, your

Macromedia Flash presentation would no

longer scale as effectively.

You can work around some of this

problem by increasing the resolution of

the bitmapped image during conversion

(see Image XXI). However, a higher reso-

lution can greatly increase the file size of

your presentation.

If you can accept the drawbacks of

using bitmaps in place of pristine vectors,

then always remember that you have the

Convert to Image option in FreeHand MX,

and this option is completely compatible

with SWF export.

Note: There is another technique that I

have used, that I will mention in passing

– separating lines and fills into two sepa-

rate layers, with the fill layer in front of

the line layer. In situations where you

really need to preserve your line art while

moving drastically between different

sizes, this has some advantages worth

looking into.

Joe Sparks is an artist, animator, musi-

cian, and game designer. His work has

garnered many industry awards, includ-

ing New Media's Award of Excellence

and Macworld Magazine's Game of the

Year. Sparks is known for pioneering the

multimedia games Spaceship Warlock

and Total Distortion, and more recently,

for his popular animation series Radiskull

& Devil Doll. joe@joesparks.com

im
a

g
e

X
V

im
a

g
e

 X
V

I
im

a
g

e
 X

V
II

im
a

g
e

 X
V

II
I

im
a

g
e

 X
IX

im
a

g
e

 X
X

im
a

g
e

 X
X

I

10 • 200310 • 2003

step forward, and fast forward – in that

order.

The Controller toolbar duplicates all

of the functions found on the Preview

window, but adds a helpful Test Movie

button, an extra Action tool, and a short-

cut to the Navigation panel.

Exporting Macromedia Flash
Movies (Save as SWF)

A Macromedia Flash movie is one of

the best ways you can share your presen-

tation with the world. Nearly every com-

puter can play a SWF file (the com-

pressed Macromedia Flash file format).

Even illustrators and FreeHand users who

have no need for interactive presenta-

tions will find that exporting a single-

image SWF is often the very best way to

share your work. The end result is a very

lightweight file that can scale to any size.

Exporting a SWF for our little Logo

Browser project is as simple as it gets.

1. Select Export... from the File menu. The

dialog box shown in Image XIII

appears.

2. Select Macromedia Flash (SWF) from

the Format pop-up menu.

Next to the Format menu, there is a

Setup button. When the format is a SWF,

this Setup button will take you to the

Movie Settings dialog box, where you can

instruct FreeHand on the particulars of SWF

export. If everything played well during the

“Test Movie”stage, then you should be all

ready to export. Since you are not doing

animation, there is very little to worry

about; the default Movie Settings should

handle it just fine. Even so, you should dou-

ble-check the settings (see Image XIV).

The Movie Settings (also accessible

from the Preview window, the Controller

toolbar button, or off the menu at

Windows > Movie > Movie Settings) are

extremely important for Macromedia

Flash authors. This is where you tell

FreeHand how to export the FreeHand

document as a movie and how to inter-

pret layers as animation. There are also

other important settings in this area.

For now, I will export the project

“Project 1 Result: Logo Browser for Flash

Player” as a SWF file. You can check it out

by downloading the source files from

www.sys-con.com/mx/sourcec.cfm

Working Around Macromedia
Flash and FreeHand

Rendering Differences (Line
Scaling)

Every now and then, an ele-

ment that you have created in

FreeHand (or even from within

Macromedia Flash) ends up looking

far different than you would expect

under certain situations. This can be frus-

trating. In this section, I will clarify some

things about how to deal with how

scaled vector lines render in Macromedia

Flash and show you strategies for work-

ing around some rendering problems. If

you follow this section, you may save a

great deal of time later on.

If you were paying attention to the

fourth logo in Image XII, you may have

noticed that the stars around the logo

seem very dark compared to how the

logo looked inside FreeHand MX and the

higher resolution GIF. Take a closer look

at Image XV.

This “different look”in Macromedia

Flash Player has little to do with the

FreeHand SWF export, rather, it stems

from the way Macromedia Flash renders

fixed or minimum line widths – regardless

of scale. This happens with artwork creat-

ed inside Macromedia Flash as well. In fact,

a fixed line width is truly a generic feature

of all vector illustration software – and the

root problem in this particular situation.

If you have worked in Macromedia

Flash for a while, you may have encoun-

tered some rendering problems where

the line color starts to crowd out the fill

color on vector shapes. In this section,

you will find some valuable tips for coerc-

ing better rendering out of Macromedia

Flash when this problems occurs.

Here’s is a demo of the line weight

problem from within Macromedia Flash

MX. First, I will draw a simple graphic

right into the time line, using the

Macromedia Flash drawing tools.

Next, I will take this simple drawing

and scale it, in a number of ways, to

demonstrate what can happen when you

scale the line art (see Image XVI).

In Column A, you can see the heart of

the problem. When you scale vector

graphics that exist solely in the time line

(not as a symbol), the tool scales the size

of the shape, but it does not scale the

line width on the graphics – it remains

fixed. Grouping the graphic before you

scale also does not help.

In Column B, see the results of our

“Primary Solution,” which is to take the art

from A1 and turn it into a symbol in the

Macromedia Flash library (a movie clip in

this case). When you scale the symbol in

the Macromedia Flash time line,

Macromedia Flash will scale the line

width relative to the scale of the symbol.

This works quite well in most cases.

There’s only one catch – Macromedia

Flash has a minimum line width setting

of .25. Once your line width reaches this

size, Macromedia Flash cannot draw

them any smaller. Therefore, certain kinds

of art with many tiny lines to begin with

will still reach a point where the render-

ing is all line and no fill.

In Column C, see the “Extreme

Solution,” which can really work wonders

with certain kinds of problematic line-

rich artwork. In this case, I also created a

symbol, but took it another step by

selecting all of the lines in the graphic

and converting them to fills. This is

“extreme” because it makes the artwork

much more difficult to edit. You should

MXDJ.COM • 4544 • MXDJ.COM

46 • MXDJ.COM 10 • 2003

y the time you read this, the

next update of ColdFusion MX,

code-named Red Sky, will have

been released. This new ver-

sion is called ColdFusion MX 6.1. Much

will be made of the improved speed

under MX 6.1, as well as the dramatic

improvements to cfmail and other areas.

However, one of the most exciting

aspects of MX 6.1 is the CFC bug fixes

and improvements. In this article we are

going to discuss a few of the more

important bug fixes, as well as some of

the new features supported in MX 6.1.

Then, I’ll show you a simple way to add

an “isRedSky” check to your code to

ensure your CFCs run only under the MX

6.1 version of ColdFusion.

Let’s begin by taking a look at a few

of the big bugs that are fixed in MX 6.1.

Using Includes Inside
CFC Methods

Imagine you have a CFC that is quite

large. You decide to break up the file a bit

by moving some of the larger methods

into include files. However, you immedi-

ately run into an issue trying to use argu-

ments. In other words, if a CFC method

takes two arguments, name and age, they

would not be available to the included

template. This is just one of the bugs fixed

in MX 6.1. However, there is one thing to

remember. While you can move most of

your code into the included file, <cfargu-

ment> tags, var statements, and the

<cfreturn> tag must be in the main CFC

template. So, an example method might

look like that shown in Code I.

This method looks like any other – we

begin by defining a set of arguments fol-

lowed by a set of var statements. Then

we have our cfinclude. Finally we have

the cfreturn tag. Our method code inside

_test.cfm could be anything.

The ‘Page Context’ Bug
The so-called “page context” bug is

probably the biggest issue corrected in

MX 6.1, which is wonderful since this

bug alone has probably caused many

CFC developers quite a few hours of

frustration. This bug is hard to debug

since it behaves so oddly. To see this

bug in action, let’s take a look at some

sample code. Code II defines a very sim-

ple CFC.

This method has one method, dump,

that uses the <cfdump> tag to dump

both the This scope as well as the result

of getMetaData() on the This scope. Note

that it dumps this result directly instead

of using <cfreturn> to return the data.

Normally a typical CFC would have many

other methods. Code III simply demon-

strates how we might use this CFC.

This script simply creates an instance

of the CFC we defined earlier and stores it

in the Application scope. As you can tell,

it will only do this on the first hit since

variables in the Application scope will be

cached. Last, we call the dump method

on the CFC.

If you run this code on a non-MX 6.1

version of MX, something interesting will

happen. The first time you run the code,

it will work perfectly. The second time

you run it, nothing will be displayed. You

won’t get an error, nor will you get any

output. I have to say, the first time I ran

into this bug I thought I was going crazy.

On a whim I decided to restart MX,

which of course cleared the Application

scope. This just drove me even more

nuts. Finally I got confirmation that this

was an example of the “page context”

bug.

Another example of this is a CFC that

uses the Application scope. You may be

saying, aren’t you already doing that in

Code III? No – Code III shows an example

of storing a CFC in the Application scope.

The CFC has no idea it’s being stored

there. What I’m talking about is a CFC

that inside itself references the

Application scope. For example, a CFC

method with a database query may ref-

erence application.dsn for the data

source. This method would fail when the

CFC is cached as in Code III. The CFC sim-

ply “loses” access to the Application

scopes, as well as all other scopes. It also

loses the ability to “write” directly from

the method, as we did in our dump

method.

If all this sounds a bit confusing, the

important thing to remember is that it all

goes away in MX 6.1. Some people will

say you shouldn’t reference “outside”

scopes from within the CFC anyway. And

outputting directly from a CFC method

should rarely be used since it means the

CFC method cannot be called from Flash

Remoting.

So, we’ve talked about two issues that

are fixed with CFCs in MX 6.1. Other issues

fixed in MX 6.1 include the use of <cftrans-

action> around CFC calls, the use of the

Variables scope in CFCs, as well as issues

with CFCs under load. Let’s talk about some

of the new features of CFCs in MX 6.1.

It’s a Bird, It’s a Plane,
It’s Super Method!

One of the coolest new features of

CFCs in MX 6.1 is super() support. Those

of you who have done some Java devel-

opment, or other truly OO development,

will recognize what this means. For those

of you who have not, let’s consider a sim-

ple case. Imagine you have a CFC for your

products. One of the methods generates

the price for the product. This isn’t as sim-

ple as returning the price field for the

particular item. The method actually

takes taxes into consideration as well as

cfmx 6.1

ColdFusion Components
Under a Red Sky

Now is the time to discover how much they can aid in your development
by raymond camden

b

any other promotions. This method is

called getPrice().

Now consider another CFC that

extends the product CFC, Book. One of

the ways Book products differ from other

products is that their prices are generat-

ed differently, but only slightly differently.

We want to use the same formula that

the Product CFC uses, but we then need

to further modify that result. Before MX

6.1, we would have to either use a differ-

ent method name, or cut and paste the

code from Product.cfc. However, under

MX 6.1, we can use super.methodName

to call a method in a parent class. This

means Book can have its own getPrice()

method that looks like that shown in

Code IV.

This method uses the super feature

to call the getPrice method in its parent.

Since Book extends Product, this means

super directly references the code for

Product’s getPrice method. What’s great

about this syntax is that it means I can

greatly simplify the code in Book’s

getPrice method(). Once I have the result

of the more generic getPrice call, I can

then apply the particular pieces of logic

that books need when determining their

price. (In this example I simply add 5

then multiply by 2. In the real world you

would have more meaningful calcula-

tions.)

Checking for MX 6.1
As you know, each version of

ColdFusion MX (from 1.0 to the various

updaters to “Red Sky” or 6.1) has had vari-

ous build numbers that represent the

version. These numbers are not very easy

to remember. However, if all you care

about is if a server is MX 6.1 or not, you

can use a simple trick. (This trick can be

modified to check for MX compared to

CF5 as well.) Simply use the results of

getFunctionList to check for something

that exists in MX 6.1. In our example UDF,

we will use wrap, a function added in MX

6.1 (see Code V).

This UDF simply takes the result of

getFunctionList (which is a struct for some

strange reason), calls structKeyList on it,

and then searches the list for the new

wrap function. This code could be placed

in the constructor of a CFC to ensure the

CFC runs only on an MX 6.1 box.

Conclusion
I hope this article encourages you to

check out MX 6.1. If you have not yet

played with ColdFusion Components,

now is a wonderful time to begin discov-

ering how much they can aid in your

development.

10 • 2003 MXDJ.COM • 47

<cffunction name="test" returnType="string"

access="public" output="false">

<cfargument name="name" type="string" required="true">

<cfargument name="age" type="numeric" required="true">

<cfset var x = 0>

<cfset var i = 0>

<cfset var str = "">

<cfinclude template="_test.cfm">

<cfreturn str>

</cffunction>

<cfcomponent output="false">

<cffunction name="dump" access="public" returnType="void" output="true">

<cfdump var="#this#" label="This">

<cfdump var="#getMetaData(this)#" label="getMetaData(this)">

</cffunction>

</cfcomponent>

<cfapplication name="bug1">

<cfif not isDefined("application.pageContextBugCFC")>

<cfset application.pageContextBugCFC = createObject("component","page-

contextbug")>

</cfif>

<cfset application.pageContextBugCFC.dump()>

Raymond Camden is co-technical editor of ColdFusion Developer’s Journal and a senior

software engineer for Mindseye, Inc. A longtime ColdFusion user, Raymond is a co-

author of the "Mastering ColdFusion" series published by Sybex Inc, as well as the

lead author for the ColdFusion MX Developer’s Handbook. He also presents at

numerous conferences and contributes to online webzines. He and Rob Brooks-

Bilson created and run the Common Function Library Project (www.cflib.org),

an open source repository of ColdFusion UDFs. Raymond has helped

form three ColdFusion User Groups and is the manager of the

Acadiana MMUG.

c
o

d
e

 I
c

o
d

e
 I

I
c

o
d

e
 I

II

–code continued on next page

c
o

d
e

 I
V

c
o

d
e

 V

<cffunction name="getPrice"

access="public" returnType="numeric"

output="false">

<cfargument

name="productID" type="numeric"

required="true">

<cfset var subtotal =

super.getPrice(productID)>

<cfset var total = subto-

tal>

<cfset total = total + 5>

<cfset total = total * 2>

<cfreturn total>

</cffunction>

<cfscript>

function isRedSky() {

if(listFindNoCase(structKeyList(getFunct

ionList()),"wrap")) return true;

else return false;

}

</cfscript>

<cfoutput>Is this a MX 6.1/Red Sky box?

#isRedSky()#</cfoutput>

Ah, but what about lock-in? Once you

go to SWF you’re committed to that for-

mat, so you’re locked in as with other

technologies, right? Well, no, not really.

It’s hard to find anything else with the

same range of abilities as the

Macromedia Flash Player, so direct export

to other formats always loses some fea-

tures. But today there are various ways to

parse and abstract SWF files to produce

XML representations that can then be

constructed into other types of deliver-

ables.

Abstraction models do differ, so when

you do a Web search on “swf xml trans-

late” you’ll find some XML transforms that

focus on visual representations, media

reps, or interactivity representations.

Translating SWF to XML can now be done

in various ways to various ends.

Conclusion
So, is the Macromedia Flash Player a

“platform?” In some ways it is, because it

lets you predictably run certain opera-

tions on machines you don’t control. In

this sense it’s the most popular and excit-

ing platform in the world. But if so, it’s a

cooperative platform that works with the

widest range of authoring, delivery, and

viewing technologies. Because it’s con-

strained to a platform-neutral layer it’s

also safer and more sustainable than

other platforms out there.

If you want to talk about “the

Macromedia MX platform,” then I won’t

argue with you, although you’ll probably

find others to debate you on this. But I

usually just give up and call it “the platform

that isn’t a platform” myself... those self-

negating statements usually tend to lead

to shorter e-mail threads anyway.... ;-)

John Dowdell came to Macromedia

through user groups in the ‘90s, as tech

support across the tools, particularly

online. Today he mostly listens to the

online discussions, distilling customer

comments and evangelizing these within

the company. jdowdell@macromedia.com

–continued from page 10

48 • MXDJ.COM 10 • 2003

http://www.nqcontent.com
http://www.interakt.ro

50 • MXDJ.COM 10 • 2003

cDonald’s, Toyota, BMW, Toys

R Us, Harry Potter, Mattel,

Disney. All of these compa-

nies and countless others have turned to

Macromedia Director during its 14-year his-

tory – to get a job done that

was otherwise impossible with-

out this powerful application.

Since the 1980s, Director has

enabled businesses to use mul-

tiple media types to communi-

cate messages effectively. It's

just that simple. Director allows

businesses to communicate

with customers in the most

interactive and engaging ways

possible.

Fourteen years later, still

going strong, Director MX is a completely

up-to-date application that is just as fresh

today as the day it was born. And now it

has joined the MX product family with a

new user interface and tight integration

with the other MX products to ensure

that developers can create effective rich

content and applications.

With Director MX, you can make con-

tent accessible to computer users who

have hearing, visual, or mobility impair-

ments by using text-to-speech (TTS)

capabilities (with the new Speech Xtra),

captioning, and completely customizable

tab navigation.

Powerful
Director MX allows you to build your

project efficiently for the Web (through

Shockwave Player) or as a stand-alone

application. Create presentations, appli-

cations, and games using the media you

prefer – audio, video, graphics of all sorts

– the choice is yours.

Then, deliver your content wherever

your message makes the most impact.

Don’t waste development time recre-

ating content for every plat-

form and delivery method.

With Director, author your content

and your users can view it wherever they

are – whether they are on the Web, play-

ing a CD/DVD, or using a kiosk.

Powerful means you're never limited

by the application. Director is completely

extensible through extensions called

Xtras. There are hundreds of Xtras avail-

able to take your projects in whatever

direction you choose. For instance, if you

want to add joysticks to a kiosk-based

project, you can...if you use Director.

Integrated
Macromedia knows that many devel-

opers use Macromedia Flash and Director

together, but that the workflow between

these products has not been as stream-

lined as it could be – until now. In this

release, Macromedia has optimized the

workflow and process.

With Director MX, developers can now

import Macromedia Flash MX files and

then edit them quickly and efficiently

with the new Macromedia Flash launch-

and-edit functionality. Additionally,

Director developers can now access and

control elements in a Macromedia Flash

movie from directly within the Director

application, using Lingo control over

Macromedia Flash objects.

For instance, if you were to insert a

Macromedia Flash movie that has a blue

house and then you decide to change it

to green, you can change its color from

within Director without having to launch

Macromedia Flash. If you want to create a

Macromedia Flash XML socket to use in

Director, you can create it in Lingo.

Developers now have more control over

how they use these applications together.

Director applications can even con-

nect to servers, including ColdFusion MX

and Macromedia Flash Communication

Server MX. Director MX includes a copy of

Macromedia Flash Communication

Server MX Personal Edition, so you can

get started right away.

Accessible
Accessibility is especially important for

Director developers, the vast majority of

whom create content that must adhere to

federal accessibility guidelines. Director

MX enables developers to create accessi-

ble content in unique ways. With Director,

you can create applications that are self-

voicing for visually impaired users, tab

navigable for physically impaired users,

and captioned for hearing-impaired users.

The self-voicing capability does not

require a screen reader, thereby broaden-

ing access to accessible content.

You can update existing Director proj-

ects easily to fulfill accessibility guide-

lines by using drag-and-drop behaviors.

Moreover, accessible Director applica-

tions can be deployed on both Macintosh

and Windows machines in a browser or

as stand-alone applications.

Miriam Geller is the senior product

manager for Director and Shockwave

Player. She has been with Macromedia

since 1999 driving development of these

products. Miriam has been in the industry

for a dozen years focusing on both

hardware and software technology

development. mgeller@macromedia.com

enhance

m

More power, more
access, better integration
by miriam geller

Introducing Director MX

This article

originally appeared

on the Macromedia

Developer Center at

www.macromedia

.com/go/developer.

http://www.macromedia.com

http://www.sys-con.com

